SMF SOLUTIONS TO EXAMINATION. 2011
Q1. (i) The joint moment-generating function (MGF) is
M (u,v) := Eexp{u’ Az + v" Br} = Eexp{(ATu + BTv)"x}.

This is the MGF of x at argument t = ATu + BTv, so
1
M(u,v) = exp{(uTA+UTB)M+§[UTAZATU+UTAEBTU—HJTBEATU—H}TBEBTU]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AXBT = 0 and BXAT = 0; by
symmetry of ¥, the two are equivalent. //
(i)
() With P = A, & = 2], I — P = B, AXBT = ¢2P(I — P) = 0, as
P(I-P)=P—-P?=P—P=0as P is a projection. So independence of
the linear forms follows by (i).
(b) XTPX = XTPPX = XTPTPX = (PX)T(PX), as P is a symmetric
projection, and similarly X7 (I — P)X = ((I — P)X)*((I — P)X). So inde-
pendence of the quadratic forms follows by (a).
(iii) As P is real and symmetric, it can be diagonalised by an orthogonal
transformation: P = BTDB with B orthogonal and D diagonal; the ele-
ments of D are the eigenvalues of (D and) P. As X ~ N(0,0%I) and B
is orthogonal, Y := BX ~ N(0,02I) also. So XT"PX = X"BTDBX =
(BX)TD(BX) =YTDX; as Y =4 X, w.lo.g. take P = D orthogonal. As
P, or D, is idempotent, its eigenvalues are 0 or 1. Its trace is the sum of
the eigenvalues, = the number of 1s, = the number of non-zero eigenvalues,
= the rank, = k, given. So the quadratic form is o2 times the sum of the
squares of k independent N (0, 1)s, which is x?(k). Similarly for I — P and
n —k:

XTPX/o* ~ 2 k), XTI —P)X/o*~ x*(n—k).



Q2. ya=a+e€e,yp =0+ ¢€, yp_a = —a+ [+ €3. So the regression model
is y = AB + ¢, where y is the 3-vector of readings, € is the 3-vector of errors,
[ is the 2-vector of parameters and A is the design matrix.

(a)
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(d) The parameter estimates are

o 121 -1 AN fa)
YB—A

A

&= (2ya+yp—yp-a)/3, B=Ya+2ys+yp-a)/3.
(e) The fitted values are § = Py, which can be written in two ways:

A

(2ya +yp —yp-a)/3 o
(ya+2ys+yp_a)/3 = I6;
(—ya+ys+2yp_4a)/3) p—a

(f) As n =3, p =2 here, the ranks of P, I — P are 2 and 1.

(g) Write SSE, the sum of squares for error, for y*' (I — P)y. Asn —p =1,
62 = SSE/(n — p) = y* (I — P)y, which can be calculated by above. With
numerical data, SSF is the sum of squared residuals, > (y; — 9;)%.



Q3. (i) The AR(p) model is

Xi =01 X1+ G Xy o+ + Op Xy + €, (%)
with (e;) white noise. In terms of the lag operator B,
Xy — ¢ BXy — - — ¢, B’ X, = ¢.
Write p(\) := 1 — A — -+ — ¢\ ¢(B)X; = ¢, X, = ¢(B) ‘¢, So if
1/¢(A) = 1+ A N Xy =" diBley =Y ey i, (MA)
giving the moving-average representation. (5]

(i)  Multiply (*) through by X;  and take expectations. Since E[X; ;X; ;] =
p(|k —i]) = p(k — 1), this gives the Yule-Walker equations

pk) = d1p(k = 1)+ -+ pp(k —p)  (k>0), (YW)
a difference equation of order p with characteristic polynomial AP — ¢ AP~ —
coo— @p. If Ay, -+, A\, are the roots of this characteristic polynomial, the

general solution is p(k) = ctAf +- -+ ¢Ax (for k> 0, and use p(—k) = p(k)
for k < 0) if all the roots \; are distinct, with appropriate modifications for
repeated roots (if A = Ay, use c; \F + cokAY, ete.). (5]
(i)
1
Xt = Xt—l — iXt_2 + €¢, (Et) WN (*)

Substitute (M A) into (x):
Zo Vi€ = Zo wiet—i—l_izo Vi€ o ite€ = Zl %—161&—1’—122 VYi—2€it€;.
Equate coefficients of €,_;: ¢ = 0 gives ¢y = 1; ¢ = 1 gives ¢; = 1; ¢ > 2 gives
1

Vi = i1 — 1%72
This is a difference equation, with characteristic polynomial A2 —\+1/4 = 0,
or (A —1/2)? =0, with a double root A; = 1/2. The general solution of the
difference equation is thus 1; = a/2" + b.i/2". As g =1, a = 1; as ¢ = 1,
(1+5)/2=1,b=1. So ¢; = (1 +1i)/2". The moving-average representaton
is thus

X =Y (1+i)e/2" [10]

i=0
(iv) This converges a.s. and in mean, as ¢» = (¢;) € {1, and in mean square,
as ¢ € lo. (5]



Q4. zo|zy ~ N(pg + S X171 (21 — p11), Bao — 1 B11 Ta)-
If 21, 29,23 ~ N(u, X) are independent, y; := 1 + xo, y2 := T3 + x3, then
y = Ax, where

So the mean is

Ey:A.Ex:Au:<u1+u2>—m,
M2+ 3

say. The variance is

A AT
var(y) = ALAT = p 1 p 11
011
o p 1) \0 1
(110 11p 1%:) (242 1+43p
“\lo11 Qpp 1+Z “\1+43p 2420 )
So
1+ o 24+2p 1+3p
~ N by = Yy = .
Yy (m7 y)7 m <M2+M3>’ ) <1+3p 2+2p

(ii) So on conditioning, the four partitioned submatrices are the four compo-
nents; the conditional mean and conditional variance of y;|y, are

1+ 3p 1+ 3p (1+3p)?
mi+—————(yo—my) = 1+ po+———-(yo—p1o—pz), 2(14p)———"-.
1 2(1+,0)<y2 2) T2 2(1+p)(y2 2 ,u3) ( P) 2(1+p)
So
+3p (14 3p)?
~ N(pg + pto + ————(yo — o — p3), 2(1 + p) — ————).
Y1 |y2 (p1 + o 205 p) (Yo — p2 — p3),2(1 + p) 2(1+p))



Q5. In principal components analysis (PCA), we seek a dimension reduction,
say from p to k. The covariance (or correlation) matrix 3, being real and
symmetric, can be diagonalised by an orthogonal transformation:

¥ =TATT,

where A = diag(\;) with Ay > ... > A, > 0 are the eigenvalues of ¥ and
I' is an orthogonal matrix of corresponding normalised eigenvectors. Then
y1 = vi (x—p) is the standardised linear combination (SLC — sums of squares

of coefficients = 1) of & with largest variance (), ...,

Yk =% (T = )

the SLC of largest variance ()\;) uncorrelated with y,...,yx—1. Then the
proportion of the total variability explained by the first k& principal compo-
nents is (A1 +...+ ;) /(A1 +...+X,). We continue to retain PCs until we are
satisfied that this fraction is acceptably high. We then use these k PCs as a
parsimonious summarisation of the data in k rather than p dimensions. [6]

We need to choose, before doing PCA, whether to work with covariances
or with correlations. One prefers covariances when the units in which the
data are measured are meaningful, correlations otherwise. [6]
Examples with correlations. Typically, data are given in terms of prices, and
these are meaningful — they are expressed directly in terms of money. But
what matters to an investor now is whether the stock will appreciate or de-
preciate. The actual amounts he cares about are the amounts he will invest
in the various candidate stocks, and the number of stocks he holds in the
company is simply the ratio of his stake to the stock price. Similarly, with
foreign exchange, the units of currency in different countries may be of dif-
ferent orders of magnitude. Similarly for an investor dividing his holdings
between different economic sectors: what counts here is proportions.
Examples with covariances. FExamples where the units are meaningful in-
clude the internal accounts of a company, where different departments, or
activities, contribute to the overall company accounts and balance sheet: all
entries are in terms of money, and relate directly to profit and loss.

Empirical evidence suggests that in managing a portfolio of a range of
stocks (that should be balanced — include lots of negative correlation — by
Markowitzian diversification), covariances are better than correlations. [13]

N. H. Bingham



