
SMF SOLUTIONS TO EXAMINATION. 2011

Q1. (i) The joint moment-generating function (MGF) is

M(u, v) := E exp{uTAx+ vTBx} = E exp{(ATu+BTv)Tx}.

This is the MGF of x at argument t = ATu+BTv, so

M(u, v) = exp{(uTA+vTB)µ+
1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent. //
(ii)
(a) With P = A, Σ = σ2I, I − P = B, AΣBT = σ2P (I − P ) = 0, as
P (I − P ) = P − P 2 = P − P = 0 as P is a projection. So independence of
the linear forms follows by (i).
(b) XTPX = XTPPX = XTP TPX = (PX)T (PX), as P is a symmetric
projection, and similarly XT (I − P )X = ((I − P )X)T ((I − P )X). So inde-
pendence of the quadratic forms follows by (a).
(iii) As P is real and symmetric, it can be diagonalised by an orthogonal
transformation: P = BTDB with B orthogonal and D diagonal; the ele-
ments of D are the eigenvalues of (D and) P . As X ∼ N(0, σ2I) and B
is orthogonal, Y := BX ∼ N(0, σ2I) also. So XTPX = XTBTDBX =
(BX)TD(BX) = Y TDX; as Y =d X, w.l.o.g. take P = D orthogonal. As
P , or D, is idempotent, its eigenvalues are 0 or 1. Its trace is the sum of
the eigenvalues, = the number of 1s, = the number of non-zero eigenvalues,
= the rank, = k, given. So the quadratic form is σ2 times the sum of the
squares of k independent N(0, 1)s, which is χ2(k). Similarly for I − P and
n− k:

XTPX/σ2 ∼ χ2(k), XT (I − P )X/σ2 ∼ χ2(n− k).
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Q2. yA = α+ ϵ1, yB = β + ϵ2, yB−A = −α+ β + ϵ3. So the regression model
is y = Aβ⃗ + ϵ, where y is the 3-vector of readings, ϵ is the 3-vector of errors,
β⃗ is the 2-vector of parameters and A is the design matrix.
(a)

A =

 1 0
0 1
−1 1

 .
(b)

C := ATA =

(
1 0 −1
0 1 1

) 1 0
0 1
−1 1

 =

(
2 −1
−1 2

)
; |C| = 3.

So

C−1 =
1

3

(
2 1
1 2

)
, C−1AT =

1

3

(
2 1
1 2

)(
1 0 −1
0 1 1

)
=

1

3

(
2 1 −1
1 2 1

)
.

(c)

P =
1

3

 1 0
0 1
−1 1

( 2 1 −1
1 2 1

)
=

1

3

 2 1 −1
1 2 1
−1 1 2

 , I−P =
1

3

 1 −1 1
−1 1 −1
1 −1 1

 .
(d) The parameter estimates are

C−1ATy =
1

3

(
2 1 −1
1 2 1

) yA
yB
yB−A

 =

(
α̂

β̂

)
:

α̂ = (2yA + yB − yB−A)/3, β̂ = (yA + 2yB + yB−A)/3.

(e) The fitted values are ŷ = Py, which can be written in two ways: (2yA + yB − yB−A)/3
(yA + 2yB + yB−A)/3

(−yA + yB + 2yB−A)/3)

 =

 α̂

β̂

β̂ − α̂

 .
(f) As n = 3, p = 2 here, the ranks of P , I − P are 2 and 1.
(g) Write SSE, the sum of squares for error, for yT (I − P )y. As n− p = 1,
σ̂2 = SSE/(n − p) = yT (I − P )y, which can be calculated by above. With
numerical data, SSE is the sum of squared residuals,

∑
(yi − ŷi)

2.
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Q3. (i) The AR(p) model is

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt, (∗)
with (ϵt) white noise. In terms of the lag operator B,

Xt − ϕ1BXt − · · · − ϕpB
pXt = ϵt.

Write ϕ(λ) := 1− ϕλ− · · · − ϕpλ
p: ϕ(B)Xt = ϵt: Xt = ϕ(B)−1ϵt. So if

1/ϕ(λ) ≡ 1+ψ1λ+· · ·+ψnλ
n+· · · , Xt =

∑∞
i=0
ψiB

iϵt =
∑∞

0
ψiϵt−i, (MA)

giving the moving-average representation. [5]
(ii) Multiply (∗) through byXt−k and take expectations. SinceE[Xt−kXt−i] =
ρ(|k − i|) = ρ(k − i), this gives the Yule-Walker equations

ρ(k) = ϕ1ρ(k − 1) + · · ·+ ϕpρ(k − p) (k > 0), (YW )

a difference equation of order p with characteristic polynomial λp−ϕ1λ
p−1−

· · · − ϕp. If λ1, · · · , λp are the roots of this characteristic polynomial, the
general solution is ρ(k) = c1λ

k
1 + · · ·+ cpλ

k
p (for k ≥ 0, and use ρ(−k) = ρ(k)

for k < 0) if all the roots λi are distinct, with appropriate modifications for
repeated roots (if λ1 = λ2, use c1λ

k
1 + c2kλ

k
1, etc.). [5]

(iii)

Xt = Xt−1 −
1

4
Xt−2 + ϵt, (ϵt) WN. (∗)

Substitute (MA) into (∗):∑∞
0
ψiϵt−i =

∑∞
0
ψiϵt−i−1−

1

4

∑∞
0
ψiϵt−2−i+ϵt =

∑∞
1
ψi−1ϵt−i−

1

4

∑∞
2
ψi−2ϵt−i+ϵt.

Equate coefficients of ϵt−i: i = 0 gives ψ0 = 1; i = 1 gives ψ1 = 1; i ≥ 2 gives

ψi = ψi−1 −
1

4
ψi−2.

This is a difference equation, with characteristic polynomial λ2−λ+1/4 = 0,
or (λ− 1/2)2 = 0, with a double root λ1 = 1/2. The general solution of the
difference equation is thus ψi = a/2i + b.i/2i. As ψ0 = 1, a = 1; as ψ1 = 1,
(1 + b)/2 = 1, b = 1. So ψi = (1 + i)/2i. The moving-average representaton
is thus

Xt =
∞∑
i=0

(1 + i)ϵi/2
i. [10]

(iv) This converges a.s. and in mean, as ψ = (ψi) ∈ ℓ1, and in mean square,
as ψ ∈ ℓ2. [5]
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Q4. x2|x1 ∼ N(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12).

If x1, x2, x3 ∼ N(µ,Σ) are independent, y1 := x1+x2, y2 := x2+x3, then
y = Ax, where

y =

(
y1
y2

)
, x =

 x1
x2
x3

 , A =

(
1 1 0
0 1 1

)
.

So the mean is

Ey = A.Ex = Aµ =

(
µ1 + µ2

µ2 + µ3

)
= m,

say. The variance is

var(y) = AΣAT =

(
1 1 0
0 1 1

) 1 ρ ρ
ρ 1 ρ
ρ ρ 1


 1 0

1 1
0 1



=

(
1 1 0
0 1 1

) 1 + ρ 2ρ
1 + ρ 1 + ρ
2ρ 1 + ρ

 =

(
2 + 2ρ 1 + 3ρ
1 + 3ρ 2 + 2ρ

)
.

So

y ∼ N(m,Σy), m =

(
µ1 + µ2

µ2 + µ3

)
, Σy =

(
2 + 2ρ 1 + 3ρ
1 + 3ρ 2 + 2ρ

)
.

(ii) So on conditioning, the four partitioned submatrices are the four compo-
nents; the conditional mean and conditional variance of y1|y2 are

m1+
1 + 3ρ

2(1 + ρ)
(y2−m2) = µ1+µ2+

1 + 3ρ

2(1 + ρ)
(y2−µ2−µ3), 2(1+ρ)−(1 + 3ρ)2

2(1 + ρ)
.

So

y1|y2 ∼ N(µ1 + µ2 +
1 + 3ρ

2(1 + ρ)
(y2 − µ2 − µ3), 2(1 + ρ)− (1 + 3ρ)2

2(1 + ρ)
).
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Q5. In principal components analysis (PCA), we seek a dimension reduction,
say from p to k. The covariance (or correlation) matrix Σ, being real and
symmetric, can be diagonalised by an orthogonal transformation:

Σ = ΓΛΓT ,

where Λ = diag(λi) with λ1 ≥ . . . ≥ λp ≥ 0 are the eigenvalues of Σ and
Γ is an orthogonal matrix of corresponding normalised eigenvectors. Then
y1 := γT1 (x−µ) is the standardised linear combination (SLC – sums of squares
of coefficients = 1) of x with largest variance (λ1), ...,

yk := γTk (x− µ)

the SLC of largest variance (λk) uncorrelated with y1, . . . , yk−1. Then the
proportion of the total variability explained by the first k principal compo-
nents is (λ1+ . . .+λk)/(λ1+ . . .+λp). We continue to retain PCs until we are
satisfied that this fraction is acceptably high. We then use these k PCs as a
parsimonious summarisation of the data in k rather than p dimensions. [6]

We need to choose, before doing PCA, whether to work with covariances
or with correlations. One prefers covariances when the units in which the
data are measured are meaningful, correlations otherwise. [6]
Examples with correlations. Typically, data are given in terms of prices, and
these are meaningful – they are expressed directly in terms of money. But
what matters to an investor now is whether the stock will appreciate or de-
preciate. The actual amounts he cares about are the amounts he will invest
in the various candidate stocks, and the number of stocks he holds in the
company is simply the ratio of his stake to the stock price. Similarly, with
foreign exchange, the units of currency in different countries may be of dif-
ferent orders of magnitude. Similarly for an investor dividing his holdings
between different economic sectors: what counts here is proportions.
Examples with covariances. Examples where the units are meaningful in-
clude the internal accounts of a company, where different departments, or
activities, contribute to the overall company accounts and balance sheet: all
entries are in terms of money, and relate directly to profit and loss.

Empirical evidence suggests that in managing a portfolio of a range of
stocks (that should be balanced – include lots of negative correlation – by
Markowitzian diversification), covariances are better than correlations. [13]

N. H. Bingham
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