SMF EXAMINATION SOLUTIONS 2014-15
Q1. (i) (a) The log-likelihood is

(= —nlogQ—Z]wi —0|.

To maximise this — i.e. minimise ) |z; — 0| — draw a graph. From this, the
sum is minimised by # = Med, and increases linearly (slope +1 to the right,
—1 to the left) on either side. So the MLE is i = Med. [3]

(b) With one reading, as above, ¢ decreases with slope -1 to the right of Med,
slope +1 to the left of Med. So (¢)? = 1 (except at A = Med, where the
derivative is not defined — but we are going to integrate, and so can neglect
null sets, e.g single points). So I = [(dlog f/80)°f = [f =1, as fisa
density. So the CR bound is 1/n. [3]

(c) We are given that Med is asymptotically normal, and that its mean is
med = 0, so Med is asymptotically unbiased. By symmetry, the population
median is med = 60, where the density is 3. So 4f(med)® = 1, and the
asymptotic variance of the sample median is 1/n, the CR bound, so Med is

also asymptotically efficient. [4]

(ii) ()
1

flayp) = TR e 0 =log f = c—log[l + (z — p)?],

_ ) x: 0) — ~  (wi—p)
T 0 QZI:H(%—M)Z'

But we have efficiency iff ¢’ factorises in the form ¢'(x;0) = A(0)(u(x) — 0).
The likelihood here does not factorise, so there is no efficient estimator. [4]
(b) The information per reading is

G O W= [ U$—2dx 4

7) 1+ (z—p)? T + 22]3 T

say. Given I = /8 (to evaluate I by Complex Analysis: use f(z) := 2z2/[1 +
2?3, the contour I' a large semicircle in the upper half-plane; f has a triple
pole inside I" of residue —i/16, so I = 2mi Res = m/8), so the information
per reading is % So the information in a sample of size n is n/2, and the
MLE has asymptotic variance 2/n. As in (i), med = pu, f(med) = 1/m, so
the sample median Med has asymptotic variance 1/(4nf(med)?*) = 72 /4n.
So the asymptotic efficiency is their ratio, 8 /7% ~ 81%. [6]

[Seen — Problems]
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Q2. yar=a+€,yp =b+ €, yp_a = —a + b+ €3. So the regression model
is y = AB + €, where y is the 3-vector of readings, € is the 3-vector of errors,
B := (a,b)T is the 2-vector of parameters and A is the design matrix.

(a)

1 0
A= o 1|. (3]
1

3]
(c)
1 0 2 1 -1 1
1 — 1 1
-1 1 -1 1 1
[4]
(d) The parameter estimates are
1/2 1 -1 ya a
17T, _ 1 =( % ):
(T e ) ()

YB—A

0= (2ya+ys—yp-a)/3, b= (ya+2yp+ys_a)/3. 3]
(e) The fitted values are § = Py, which can be written in two ways:

(2ya+ys —yp-4a)/3
(ya+2ys+ys-a)/3 | =1|
(—ya+ys +2yp-4a)/3) b—a

(f) As n =3, p = 2 here, the ranks of P, I — P are 2 and 1. [2]
(g) Write SSE, the sum of squares for error, for y* (I — P)y. Asn —p =1,
62 = SSE/(n — p) = yT(I — P)y, which can be calculated by above. With
numerical data, SSFE is the sum of squared residuals, Y (y; — 7:)2. [2]
[Unseen; similar seen in lectures and problems]
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Q3. zo|zy ~ N(p2 + Ean B33 (21 — p1), B2 — Ton X71' T1a).
If 21, 29,23 ~ N(u, X) are independent, y; := 1 + xo, y2 := T3 + x3, then

y = Ax, where

_ [ W
Y (yz

So the mean is

). o=

EyzA.Eszuz(

say. The variance is

T
110
T2l A:(011>'

)= 3]

M1+ pi2
M2 + 3
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(ii) So on conditioning, the four partitioned submatrices are the four compo-
nents; the conditional mean and conditional variance of y;|y, are

1+ 3p 1+3p (1+ 3p)?
+———(yo— = p1+pot———(yo—pia—pz), 2(1+p)———>.
mq 2(1+p)(3/2 m2) |05y 1) 2(1+p)(y2 M2 M3) ( P) 2(1+p)
4]
So
yllyQNN(u1+u2+—H3p (y2 — pa — p3) 2(1+p)——(1+3p)2) 4]
2(1+p) ’ 2(1+p) "

[Unseen; similar seen — lectures and problems|



Q4 ARMA(]_, 1) Xt = ¢Xt—1 + €t —|— 06,5_1: (1 — ¢B)Xt = (]_ ‘l— QB)Et.
(i) Condition for stationarity and invertibility: |¢| < 1; 0] < 1. [2, 2]
(ii) Assuming these:

X,=(1-¢B)'(1+6B) = (1+ eB)<ZZ°¢iBi)et
=e+y OBea+ly o'Ba=cat+(@+9)) ¢ B
Xi=e+(p+ G)Zi:fbiil@ﬂ'-
(a) Variance: lag 7 = 0. The es are uncorrelated with variance o2, so
Yo =varX, = B[ X?] = 0® + (¢ + 9)22:0¢2(i_1)02
2 2
:a2+((?1+_—9;;; = (1 — ¢* + ¢ + 200 + 62) /(1 — ¢) :
=01+ (¢+0)*/(1—¢%) =o*(1 +260 +6%)/(1 — ¢7) 8]
(b) Covariance: lag T > 1.
thT =€+ ((b + 6)2j21¢j71€t,7-,j.
Multiply the series for X; and X;_, and take expectations:
Ve = cov( Xy, Xo—r) = B[ X Xi—r],
= Ellec + (0 + 9)2#1(#*1@4],[@4 +(o+ G)Zj:ﬁj*l@frfj]]-

The e-term in the first [.] gives no contribution. The i-term in the first []
for i = 7 and the ¢,_, in the second [.] give (¢ + 0)¢"1o?. The product
of the ¢ term in the first sum and the 5 term in the second contributes for
i=71+7; for j >1it gives (¢ + 0)*¢" 7 L.¢' 1.0 So

- (¢ + 0)¢‘r—102 + <¢ + 9)2¢T0—22;1¢2(j_1)'

The geometric series is 1/(1 — ¢?) as before, so

V=G + 0 +0%T(0+0)°/(1-9%) (T >1).

This decreases geometrically beyond the first term 79 = 1, and this behaviour
is indicative of ARMA(1,1). 8]
[Seen — lectures and problems]



Q5. (i) Markowitz work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance —
hence mean-variance analysis, efficient frontier, etc. — maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio — a range of risky assets, with lots of negative correlation — so that when
things change, losses on some assets will be offset by gains on others.  [2]
Hence the vector-matrix parameter (i, Y) is accepted as an essential part of
any model in mathematical finance.
(i) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{—%(x —
w) Y (2 —p)}, where the matrices X, ©7! are positive definite (PD), so the
contours (x — p)T S~ (z — ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

f(z) = const.g((z — )" 7z — ).
This is a semi-parametric model, where 6 := (u, o) is the parametric part
and the density generator g is the non-parametric part. [4]
(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e~2'). Though
very useful, it has various deficiencies, e.g.:
(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses

can be lethal (to the firm — bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]

(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.

(a) For long return periods (monthly, say — the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH)—log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say — every few seconds), the den-
sity typically decays like a power (as with the Student ¢ distribution). [2]
[Seen — lectures.]



Q6. (i) Edgeworth’s theorem says that if x ~ N (g, ) and K := %71,

() o exp{—5 (e — K~ ). i)

L r T T T Ky Ky 1 — M
f(@1,22) oc exp{ 2(% fiy 5 Ty = fiy) Koy Koy To — o 2

giving (as a scalar is its own transpose, so the two cross-terms are the same)
1
eXP{_g[(xf—lhT)Kn(xl—M1)+2($T—M1T)K12($2—M2)+($§F—M2T)K22($2—/~L2)]}-

So
Jip(zi]ez) = f(21,22)/ fa(22)

o exp{—5[(a] — u)Kna(er — o) + 207 — i) Kons — )]}, (+)

treating z, here as a constant and x; as the argument of f). [4]
By Edgeworth’s theorem again, if the conditional mean of z;|xs is vy,
Lir 1
Fip(aifaz) o exp{=5(z1 —v1)Vulzr — )}, ()
for some matrix V1. So z1|xs is multinormal (as may be quoted). [3]

Equating coefficients of the quadratic term gives the conditional concen-
tration matrix of xq|zy as Vi3 = Kiq:

conc(wy|za) = K. (3]

So the conditional covariance matrix is K;;'. Then equating linear terms in
(%) and (*x*) gives the conditional mean:

JT{KHl/l = ZL‘?KH[Ll—I'{Klg(ZL‘Z_[LQ) . v = E[l’lll‘g] = Ml—KilKlg(ﬂi—Mg).

3]
So
w1|wy ~ N — Ky Kig(x — po), K1), 2]
Using the quoted result for the inverse of a partitioned matrix gives
M = Ky, M =K' =% — X935, S,
K 'Ky =M Y~MBD™')= -BD™ ' = -% )%,
Combining,
T1|we ~ N + T1o855 (2 — p12), Bi1 — B12855 Son). [4]
[Seen — Problems] NHB



