
SMF EXAMINATION SOLUTIONS 2014-15

Q1. (i) (a) The log-likelihood is

ℓ = −n log 2−
∑

|xi − θ|.

To maximise this – i.e. minimise
∑

|xi − θ| – draw a graph. From this, the
sum is minimised by θ = Med, and increases linearly (slope +1 to the right,
−1 to the left) on either side. So the MLE is µ̂ = Med. [3]
(b) With one reading, as above, ℓ decreases with slope -1 to the right of Med,
slope +1 to the left of Med. So (ℓ′)2 = 1 (except at λ = Med, where the
derivative is not defined – but we are going to integrate, and so can neglect
null sets, e.g single points). So I =

∫
(∂ log f/∂θ)2f =

∫
f = 1, as f is a

density. So the CR bound is 1/n. [3]
(c) We are given that Med is asymptotically normal, and that its mean is
med = θ, so Med is asymptotically unbiased. By symmetry, the population
median is med = θ, where the density is 1

2
. So 4f(med)2 = 1, and the

asymptotic variance of the sample median is 1/n, the CR bound, so Med is
also asymptotically efficient. [4]
(ii) (a)

f(x;µ) =
1

π(1 + (x− µ)2)
, ℓ = log f = c− log[1 + (x− µ)2],

ℓ′ =
2(x− µ)

1 + (x− µ)2
, ℓ′(x; θ) = 2

n∑
1

(xi − µ)

1 + (xi − µ)2
.

But we have efficiency iff ℓ′ factorises in the form ℓ′(x; θ) = A(θ)(u(x)− θ).
The likelihood here does not factorise, so there is no efficient estimator. [4]
(b) The information per reading is

E[(ℓ′)2] =

∫
(∂f/∂µ)2f =

4

π

∫
(x− µ)2

[1 + (x− µ)2]3
dx =

4

π

∫
x2

[1 + x2]3
dx =

4

π
I,

say. Given I = π/8 (to evaluate I by Complex Analysis: use f(z) := z2/[1+
z2]3, the contour Γ a large semicircle in the upper half-plane; f has a triple
pole inside Γ of residue −i/16, so I = 2πi Res = π/8), so the information
per reading is 1

2
. So the information in a sample of size n is n/2, and the

MLE has asymptotic variance 2/n. As in (i), med = µ, f(med) = 1/π, so
the sample median Med has asymptotic variance 1/(4nf(med)2) = π2/4n.
So the asymptotic efficiency is their ratio, 8/π2 ∼ 81%. [6]
[Seen – Problems]

1



Q2. yA = a + ϵ1, yB = b + ϵ2, yB−A = −a + b + ϵ3. So the regression model
is y = Aβ + ϵ, where y is the 3-vector of readings, ϵ is the 3-vector of errors,
β := (a, b)T is the 2-vector of parameters and A is the design matrix.
(a)

A =

 1 0
0 1
−1 1

 . [3]

(b)

C := ATA =

(
1 0 −1
0 1 1

) 1 0
0 1
−1 1

 =

(
2 −1
−1 2

)
; |C| = 3;

C−1 =
1

3

(
2 1
1 2

)
, C−1AT =

1

3

(
2 1
1 2

)(
1 0 −1
0 1 1

)
=

1

3

(
2 1 −1
1 2 1

)
.

[3]
(c)

P =
1

3

 1 0
0 1
−1 1

(
2 1 −1
1 2 1

)
=

1

3

 2 1 −1
1 2 1
−1 1 2

 , I−P =
1

3

 1 −1 1
−1 1 −1
1 −1 1

 .

[4]
(d) The parameter estimates are

C−1ATy =
1

3

(
2 1 −1
1 2 1

) yA
yB

yB−A

 =

(
â

b̂

)
:

â = (2yA + yB − yB−A)/3, b̂ = (yA + 2yB + yB−A)/3. [3]

(e) The fitted values are ŷ = Py, which can be written in two ways: (2yA + yB − yB−A)/3
(yA + 2yB + yB−A)/3

(−yA + yB + 2yB−A)/3)

 =

 â

b̂

b̂− â

 . [3]

(f) As n = 3, p = 2 here, the ranks of P , I − P are 2 and 1. [2]
(g) Write SSE, the sum of squares for error, for yT (I − P )y. As n− p = 1,
σ̂2 = SSE/(n − p) = yT (I − P )y, which can be calculated by above. With
numerical data, SSE is the sum of squared residuals,

∑
(yi − ŷi)

2. [2]
[Unseen; similar seen in lectures and problems]
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Q3. x2|x1 ∼ N(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12).

If x1, x2, x3 ∼ N(µ,Σ) are independent, y1 := x1+x2, y2 := x2+x3, then
y = Ax, where

y =

(
y1
y2

)
, x =

 x1

x2

x3

 , A =

(
1 1 0
0 1 1

)
.

So the mean is

Ey = A.Ex = Aµ =

(
µ1 + µ2

µ2 + µ3

)
= m, [3]

say. The variance is

var(y) = AΣAT =

(
1 1 0
0 1 1

) 1 ρ ρ
ρ 1 ρ
ρ ρ 1

 1 0
1 1
0 1



=

(
1 1 0
0 1 1

) 1 + ρ 2ρ
1 + ρ 1 + ρ
2ρ 1 + ρ

 =

(
2 + 2ρ 1 + 3ρ
1 + 3ρ 2 + 2ρ

)
. [5]

So

y ∼ N(m,Σy), m =

(
µ1 + µ2

µ2 + µ3

)
, Σy =

(
2 + 2ρ 1 + 3ρ
1 + 3ρ 2 + 2ρ

)
. [4]

(ii) So on conditioning, the four partitioned submatrices are the four compo-
nents; the conditional mean and conditional variance of y1|y2 are

m1+
1 + 3ρ

2(1 + ρ)
(y2−m2) = µ1+µ2+

1 + 3ρ

2(1 + ρ)
(y2−µ2−µ3), 2(1+ρ)−(1 + 3ρ)2

2(1 + ρ)
.

[4]
So

y1|y2 ∼ N(µ1 + µ2 +
1 + 3ρ

2(1 + ρ)
(y2 − µ2 − µ3), 2(1 + ρ)− (1 + 3ρ)2

2(1 + ρ)
). [4]

[Unseen; similar seen – lectures and problems]
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Q4. ARMA(1, 1). Xt = ϕXt−1 + ϵt + θϵt−1: (1− ϕB)Xt = (1 + θB)ϵt.
(i) Condition for stationarity and invertibility: |ϕ| < 1; |θ| < 1. [2, 2]
(ii) Assuming these:

Xt = (1− ϕB)−1(1 + θB)ϵt = (1 + θB)(
∑∞

0
ϕiBi)ϵt

= ϵt +
∑∞

1
ϕiBiϵt + θ

∑∞

0
ϕiBi+1ϵt = ϵt + (θ + ϕ)

∑∞

1
ϕi−1Biϵt :

Xt = ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i.

(a) Variance: lag τ = 0. The ϵs are uncorrelated with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (ϕ+ θ)2

∑∞

1
ϕ2(i−1)σ2

= σ2 +
(ϕ+ θ)2σ2

(1− ϕ2)
= σ2(1− ϕ2 + ϕ2 + 2ϕθ + θ2)/(1− ϕ2) :

γ0 = σ2(1 + (ϕ+ θ)2/(1− ϕ2)) = σ2(1 + 2ϕθ + θ2)/(1− ϕ2) [8]

(b) Covariance: lag τ ≥ 1.

Xt−τ = ϵt−τ + (ϕ+ θ)
∑∞

j=1
ϕj−1ϵt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],

= E[[ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i].[ϵt−τ + (ϕ+ θ)

∑∞

j=1
ϕj−1ϵt−τ−j]].

The ϵt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the ϵt−τ in the second [.] give (ϕ + θ)ϕτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (ϕ+ θ)2ϕτ+j−1.ϕj−1.σ2. So

γτ = (ϕ+ θ)ϕτ−1σ2 + (ϕ+ θ)2ϕτσ2
∑∞

j=1
ϕ2(j−1).

The geometric series is 1/(1− ϕ2) as before, so

γτ = σ2(ϕ+ θ)ϕτ−1 + σ2ϕτ (ϕ+ θ)2/(1− ϕ2) (τ ≥ 1).

This decreases geometrically beyond the first term γ0 = 1, and this behaviour
is indicative of ARMA(1, 1). [8]
[Seen – lectures and problems]
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Q5. (i) Markowitz’ work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis, efficient frontier, etc. – maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, losses on some assets will be offset by gains on others. [2]
Hence the vector-matrix parameter (µ,Σ) is accepted as an essential part of
any model in mathematical finance.
(ii) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{−1
2
(x −

µ)TΣ−1(x−µ)}, where the matrices Σ, Σ−1 are positive definite (PD), so the
contours (x− µ)TΣ−1(x− µ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

f(x) = const.g((x− µ)TΣ−1(x− µ)).

This is a semi-parametric model, where θ := (µ, σ) is the parametric part
and the density generator g is the non-parametric part. [4]

(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e−
1
2
.). Though

very useful, it has various deficiencies, e.g.:
(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses
can be lethal (to the firm – bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]
(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.
(a) For long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say – every few seconds), the den-
sity typically decays like a power (as with the Student t distribution). [2]
[Seen – lectures.]

5



Q6. (i) Edgeworth’s theorem says that if x ∼ N(µ,Σ) and K := Σ−1,

f(x) ∝ exp{−1

2
(x− µ)TK(x− µ)}. [1]

f(x1, x2) ∝ exp{−1

2
(xT

1 − µT
1 , x

T
2 − µT

2 )

(
K11 K12

K21 K22

)(
x1 − µ1

x2 − µ2

)
},

giving (as a scalar is its own transpose, so the two cross-terms are the same)

exp{−1

2
[(xT

1−µT
1 )K11(x1−µ1)+2(xT

1−µT
1 )K12(x2−µ2)+(xT

2−µT
2 )K22(x2−µ2)]}.

So
f1|2(x1|x2) = f(x1, x2)/f2(x2)

∝ exp{−1

2
[(xT

1 − µT
1 )K11(x1 − µ1) + 2(xT

1 − µT
1 )K12(x2 − µ2)]}, (∗)

treating x2 here as a constant and x1 as the argument of f1|2. [4]
By Edgeworth’s theorem again, if the conditional mean of x1|x2 is ν1,

f1|2(x1|x2) ∝ exp{−1

2
(xT

1 − νT
1 )V11(x1 − ν1)}, (∗∗)

for some matrix V11. So x1|x2 is multinormal (as may be quoted). [3]
Equating coefficients of the quadratic term gives the conditional concen-

tration matrix of x1|x2 as V11 = K11:

conc(x1|x2) = K11. [3]

So the conditional covariance matrix is K−1
11 . Then equating linear terms in

(∗) and (∗∗) gives the conditional mean:

xT
1K11ν1 = xT

1K11µ1−xT
1K12(x2−µ2) : ν1 := E[x1|x2] = µ1−K−1

11 K12(x−µ2).
[3]

So
x1|x2 ∼ N(µ1 −K−1

11 K12(x− µ2), K
−1
11 ). [2]

Using the quoted result for the inverse of a partitioned matrix gives

M = K11, M−1 = K−1
11 = Σ11 − Σ12Σ

−1
22 Σ21,

K−1
11 K12 = M−1(−MBD−1) = −BD−1 = −Σ12Σ

−1
22 .

Combining,

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x− µ2),Σ11 − Σ12Σ

−1
22 Σ21). [4]

[Seen – Problems] NHB
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