
SMF EXAMINATION SOLUTIONS 2015-16

Q1. Markowitz; elliptical distributions; return periods.
(i) Markowitz’ work of 1952 gave two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis, efficient frontier, etc. – maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, losses on some assets will be offset by gains on others. [2]
So (µ,Σ) is accepted as necessary.
(ii) Elliptical distributions.

The normal density f(x) in higher dimensions is a multiple of exp{−1
2
(x−

µ)TΣ−1(x−µ)}, with Σ, Σ−1 positive definite (PD), so the contours f = const.
ellipsoids. The general elliptically contoured distribution has a density

f(x) = const.g((x− µ)TΣ−1(x− µ)).

This is a semi-parametric model, where θ := (µ, σ) is the parametric part
and the density generator g is the non-parametric part. [4]

(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e−
1
2
.). Though

very useful, it has various deficiencies, e.g.:
(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses
can be lethal (to the firm – bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]
(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.
(a) For long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(b) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say – every few seconds), the den-
sity typically decays like a power (as with the Student t distribution). [2]
[Seen – lectures.]
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Q2. Lognormal distribution; normal means.
X has the log-normal distribution with parameters µ and σ, X ∼ LN(µ, σ),

if Y := logX ∼ N(µ, σ). [2]
The MGF of Y is MY (t) := E[etY ] = exp{µt + 1

2
σ2t2}: MY (1) = E[eY ] =

exp{µ+ 1
2
σ2}.

But eY = X: E[X] = exp{µ+ 1
2
σ2}: LN(µ, σ) has mean exp{µ+ 1

2
σ2 }. [3]

In geometric Brownian motion (GBM), as in the Black-Scholes model, the
price process S = (St) of a risky asset is driven by the SDE

dSt/St = µdt+ σdWt, (GBM)

with W = (Wt) Brownian motion/the Wiener process. This has solution

St = S0 exp{(µ− 1

2
σ2)t+ σWt} :

logSt is lognormally distributed. [5]
For a normal population N(µ, σ) with σ known: to test H0 : µ = µ0 v.

H1 : µ < µ0. First, take any µ1 < µ0. To test H0 v. µ = µ1, by the Neyman-
Pearson Lemma (NP), the best (most powerful) test uses test statistic the
likelihood ratio (LR) λ := L0/L1 = L(µ0)/L(µ1), where with data x1, . . . , xn

L(µ) = σ−n(2π)−
1
2
n exp{−1

2

n∑
1

(xi − µ)2/σ2},

and critical region R of the form λ ≤ const: reject H0 if λ is too small. Here
λ = exp{−1

2
[
∑

(xi− µ0)
2−
∑

(xi− µ1)
2]}. Forming the LR λ, the constants

cancel, so R has the form log λ ≤ const, or −2 log λ ≥ const. Expanding the
squares, the

∑
x2i terms cancel, so (as

∑
xi = nx̄) this is

−2µ0nx̄+ nµ2
0 + 2µ1nx̄− nµ2

1 ≥ const : 2(µ1 − µ0)x̄+ (µ2
0 − µ2

1) ≥ const.

As µ1 < µ0, this is x̄ ≤ c. At significance level α, c is the lower α-point of
the distribution of x̄ under H0. Then x̄ ∼ N(µ0, σ/

√
n), so

Z := (x̄−µ0)
√
n/σ ∼ Φ = N(0, 1). If cα is the lower σ-point of Φ = N(0, 1),

i.e. of Z := (x̄− µ0)
√
n/σ , cα = (c− µ0)

√
n/σ: c = µ0 + σcα/

√
n. [7]

But this holds for all µ1 < µ0. So R is uniformly most powerful (UMP)
for H0 : µ = µ0 (simple null) v. H1 : µ < µ0 (composite alternative). [3]
[Seen – lectures]
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Q3. Regression: towers.
yA = a + ε1, yB = b + ε2, yB−A = −a + b + ε3. So the regression model
is y = Aβ + ε, with y is the 3-vector of readings, ε the 3-vector of errors,
β := (a, b)T the 2-vector of parameters and A the design matrix.
(a)

A =

 1 0
0 1
−1 1

 ; [3]

C := ATA =

(
1 0 −1
0 1 1

) 1 0
0 1
−1 1

 =

(
2 −1
−1 2

)
; |C| = 3;

C−1 =
1

3

(
2 1
1 2

)
, C−1AT =

1

3

(
2 1
1 2

)(
1 0 −1
0 1 1

)
=

1

3

(
2 1 −1
1 2 1

)
.

[3]
(b)

P =
1

3

 1 0
0 1
−1 1

( 2 1 −1
1 2 1

)
=

1

3

 2 1 −1
1 2 1
−1 1 2

 , I−P =
1

3

 1 −1 1
−1 1 −1
1 −1 1

 .

[4]
(c) The parameter estimates are

C−1ATy =
1

3

(
2 1 −1
1 2 1

) yA
yB
yB−A

 =

(
â

b̂

)
:

â = (2yA + yB − yB−A)/3, b̂ = (yA + 2yB + yB−A)/3. [3]

(d) The fitted values are ŷ = Py, which can be written in two ways: (2yA + yB − yB−A)/3
(yA + 2yB + yB−A)/3

(−yA + yB + 2yB−A)/3)

 =

 â

b̂

b̂− â

 . [3]

(e) As n = 3, p = 2 here, the ranks of P , I − P are 2 and 1. [2]
(f) Write SSE, the sum of squares for error, for yT (I − P )y. As n− p = 1,
σ̂2 = SSE/(n − p) = yT (I − P )y, which can be calculated by above. With
numerical data, SSE is the sum of squared residuals,

∑
(yi − ŷi)2. [2]

[Unseen; similar seen in lectures and problems]
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Q4. Regression plane.
With two regressors u and v and response variable y, given a sample of

size n of points (u1, v1, y1), . . . , (un, vn, yn) we have to fit a least-squares plane
– that is, choose parameters a, b, c to minimise the sum of squares

SS :=
∑n

i=1
(yi − c− aui − bvi)2.

Taking ∂SS/∂c = 0 gives∑n

i=1
(yi − c− aui − bvi) = 0 : c = ȳ − aū− bv̄.

SS =
∑n

i=1
[(yi − ȳ)− a(ui − ū)− b(vi − v̄)]2.

Then ∂SS/∂a = 0 and ∂SS/∂b = 0 give∑n

i=1
(ui − ū)[(yi − ȳ)− a(ui − ū)− b(vi − v̄)],∑n

i=1
(vi − v̄)[(yi − ȳ)− a(ui − ū)− b(vi − v̄)].

Multiply out, divide by n to turn the sums into averages, and re-arrange:

asuu + bsuv = syu,

asuv + bsvv = syv.

These are the normal equations (NE) for a and b. [10]
Condition for non-degeneracy. The determinant is

suusvv − s2uv = suusvv(1− r2uv)

(as ruv := suv/(su.sv)), 6= 0 iff ruv 6= ±1, i.e., iff the (ui, vi) are not collinear,
and this is the condition for (NE) to have a unique solution. [4]
Application: Grain futures.

The two principal factors affecting grain yields (apart from the weather
near harvest – unpredictable!) are sunshine (in hours) and rainfall (in mm)
during the spring growing season (known in advance). Using these as predic-
tor variables u, v gives a best (linear unbiased) estimator of grain yield y.

The volumes of grain traded yearly are enormous. So, the ability to pre-
dict as accurately as possible the size of the summer harvest (and so, by
supply and demand, its price), given information available in the spring, is
very valuable. Such predictions can be used to form trading strategies for
grain futures and grain options, etc. (example: the Great Grain Steal of
1972, by the then USSR, on the USA and Canada). [6]
[Seen: problem sheets]
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Q5. Yule-Walker equations and AR(2).
The AR(p) model is (with (εt) white noise WN(σ))

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt. [2]

Multiply by Xt−k and take E: as E[Xt−kXt−i] = ρ(|k − i|) = ρ(k − i),

ρ(k) = φ1ρ(k − 1) + · · ·+ φpρ(k − p) (k > 0). (YW )

These are the Yule-Walker equations. [4]
They give a difference equation of order p, with characteristic polynomial

λp − φ1λ
p−1 − · · · − φp = 0.

If the roots are λ1, · · · , λp, the trial solution ρ(k) = λk is a solution iff λ is
one of the roots λi. Since the equation is linear,

ρ(k) = c1λ
k
1 + · · ·+ cpλ

k
p

(for k ≥ 0 and use ρ(−k) = ρ(k) for k < 0) is a solution for all choices of
constants ci – the general solution of (YW) if all the roots λi are distinct. [4]
Example of an AR(2) process.

Xt =
1

3
Xt−1 +

2

9
Xt−2 + εt, (εt) WN. (1)

The Yule-Walker equations here are ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2).
The characteristic polynomial is

λ2 − 1

3
λ− 2

9
= 0 : (λ− 2/3)(λ+ 1/3) = 0; λ1 = 2/3, λ2 = −1/3.

So as the roots are distinct, the autocovariance is ρ(k) = aλk1 + bλk2. [5]
k = 0: ρ(0) = 1 gives a+b = 1: b = 1−a. So ρ(k) = a(2/3)k+(1−a)(−1/3)k.
k = 1: ρ(1) = φ1ρ(0) + φ2ρ(−1); as ρ(0) = 1 and ρ(−1) = ρ(1), ρ(1) =
φ1/(1− φ2). As here φ1 = 1/3 and φ2 = 2/9, this gives ρ(1) = 3/7. So

ρ(1) = 3/7 = a.(2/3) + (1− a).(−1/3).

That is,

(
3

7
+

1

3
) = a.(

2

3
+

1

3
) = a :

a = (9 + 7)/21 = 16/21. Thus

ρ(k) =
16

21
(
2

3
)k +

5

21
(
−1

3
)k. [5]

[Seen, lectures]
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Q6. Edgeworth’s theorem; normal regression.
(i) Edgeworth’s theorem says that if x ∼ N(µ,Σ) and K := Σ−1,

f(x) ∝ exp{−1

2
(x− µ)TK(x− µ)}. [1]

f(x1, x2) ∝ exp{−1

2
(xT1 − µT1 , xT2 − µT2 )

(
K11 K12

K21 K22

)(
x1 − µ1

x2 − µ2

)
},

giving (as a scalar is its own transpose, so the two cross-terms are the same)

exp{−1

2
[(xT1−µT1 )K11(x1−µ1)+2(xT1−µT1 )K12(x2−µ2)+(xT2−µT2 )K22(x2−µ2)]}.

So
f1|2(x1|x2) = f(x1, x2)/f2(x2)

∝ exp{−1

2
[(xT1 − µT1 )K11(x1 − µ1) + 2(xT1 − µT1 )K12(x2 − µ2)]}, (∗)

treating x2 here as a constant and x1 as the argument of f1|2. [4]
By Edgeworth’s theorem again, if the conditional mean of x1|x2 is ν1,

f1|2(x1|x2) ∝ exp{−1

2
(xT1 − νT1 )V11(x1 − ν1)}, (∗∗)

for some matrix V11. So x1|x2 is multinormal (as may be quoted). [3]
Equating coefficients of the quadratic term gives the conditional concen-

tration matrix of x1|x2 as V11 = K11:

conc(x1|x2) = K11. [3]

So the conditional covariance matrix is K−111 . Then equating linear terms in
(∗) and (∗∗) gives the conditional mean:

xT1K11ν1 = xT1K11µ1−xT1K12(x2−µ2) : ν1 := E[x1|x2] = µ1−K−111 K12(x−µ2) :
[3]

x1|x2 ∼ N(µ1 −K−111 K12(x− µ2), K
−1
11 ). [2]

Using the quoted result for the inverse of a partitioned matrix gives

M = K11, M−1 = K−111 = Σ11 − Σ12Σ
−1
22 Σ21,

K−111 K12 = M−1(−MBD−1) = −BD−1 = −Σ12Σ
−1
22 .

Combining,

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x− µ2),Σ11 − Σ12Σ

−1
22 Σ21). [4]

[Seen – Problems] NHB
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