SMF EXAMINATION SOLUTIONS 2016-17
Q1. With ¢(0) the log-likelihood, the score function is
s:=1

the information per reading is

1(0) = E[{C(0)}] = —E[C"(0)] :  1(0) = E[s*(0)] = E[-5'(0)].

In the example given, write v := o2.

1 1
l(v) =log f = const — 5 logv — =(X — p)?/v,

2
s(v) = ' (v) = _% i ()(2;2/027
$) = o = L
The information per reading is
I=1I(v)=E[-5(v)] = _2%2 E[(ng— Wl _ _2_11)2 v 2_11}2

The CR bound is
1/(nl) = 2v*/n.

Write

1 n
S2 = - Z(XZ — )%
1
Then
nSE/o* ~ x(n)

(definition of x?(n)), so has mean n and variance 2n — because x?(1) has
mean 1 (‘normal variance’) and variance 2 (by an MGF calculation or from
memory). So S2 has mean o2 (so is unbiased for 02), and variance 2n.c* /n? =

202 /n, the CR bound above, so is efficient for v = o2,
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Q2. Lognormal distribution; normal means.
X has the log-normal distribution with parameters p and o, X ~ LN (u, 0),
if Y :=log X ~ N(u,o?). [2
The MGF of YV is My (t) := E[e"™] = exp{ut + 30°*}: My (1) = E[e¥] =
exp{p + 30°}.
But e¥ = X: F[X] = exp{p+ 30%}: LN(u,0) has mean exp{p+ 302 }. [3]
In geometric Brownian motion (GBM), as in the Black-Scholes model, the
price process S = (S;) of a risky asset is driven by the SDE

dSt/St :Mdt+0th, (GBM)

with W = (IW;) Brownian motion/the Wiener process. This has solution
L,
Sy = Spexp{(u — 50 Jt+ oWy}t

log S; is lognormally distributed. [5]
For a normal population N(u,o) with ¢ known: to test Hy : = pio v.
Hy @ p < pg. First, take any p; < po. To test Hy v. p = pq, by the Neyman-
Pearson Lemma (NP), the best (most powerful) test uses test statistic the
likelihood ratio (LR) A := Lo/L; = L(p)/L(u1), where with data z,...,z,

n

L(p) = a_”(ZW)_%" exp{—% Z(xz —p)?/o?,

and critical region R of the form \ < const: reject Hy if A is too small. Here
A =exp{—3[> (2 — po)? — >_(x; — p11)*]}. Forming the LR A, the constants
cancel, so R has the form log A < const, or —2log A > const. Expanding the
squares, the > x? terms cancel, so (as > x; = nx) this is

—2uonT + npd + 2pnT — npt > const : 2(py — pio)T + (ud — p?) > const.

As 1 < g, this is ¥ < c¢. At significance level «, c¢ is the lower a-point
of the distribution of Z under Hy. Then Z ~ N(pg,0?/n), so Z = (T —
po)y/njo ~ ® = N(0,1). If ¢, is the lower o-point of & = N(0,1), i.e. of
Z = (T — po)yn/o , ca = (c — po)v/njo: ¢ = g + aca//n. [7]

But this holds for all y1 < po. So R is uniformly most powerful (UMP)
for Hy : pp = po (simple null) v. Hy : g < po (composite alternative). [3]
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Q3. (i) Markowitz” work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:

(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance —
hence mean-variance analysis, efficient frontier, etc. — maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio — a range of risky assets, with lots of negative correlation — so that when
things change, losses on some assets will be offset by gains on others.  [2]
Hence the vector-matrix parameter (i, Y) is accepted as an essential part of
any model in mathematical finance.

(i) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{—2%(z —
w)TE (2 —p)}, where the matrices X, ©7! are positive definite (PD), so the
contours (x — p)T X7 (z — ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

F(z) = const.g(e — )M x — ).

This is a semi-parametric model, where 6 := (u,o) is the parametric part
and the density generator g is the non-parametric part. [4]
(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e~2"). Though
very useful, it has various deficiencies, e.g.:

(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses

can be lethal (to the firm — bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]

(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.

(a) For long return periods (monthly, say — the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH)—log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say — every few seconds), the den-
sity typically decays like a power (as with the Student ¢ distribution). [2]
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Q4 (Sufficiency for the multivariate normal). Given a sample x1, ..., x, from
a multivariate distribution, form the sample mean (vector) and the sample
covariance matriz as in the one-dimensional case:

1 < 1 <

T = — Ti, Si=- v, —7)(z; — )7, 2,2

> DUCEETEEE 29
(i) The multivariate normal distribution (in d dimensions) N(u, ) (1 a d-
vector, ¥ an d X d symmetric positive definite matrix) has density (Edge-
worth’s Theorem)

1
"

The likelihood for a sample of size 1 is

exp{— 5 (x — )= (x — )},

L(z|p, %) = (2m) PP|271/? eXp{—%(fr —w)'E @ = )},

so the likelihood for a sample of size n is

n

L= (2n) RS exp{—5 3 (@i — )" @i = ).

Writing @; — p = (z; — ) — (b — ),

Z(xi —p)"E = ) = Z(Iz‘ —2)'S N —2) +n@— 'S (T - p)

(the cross-terms cancel as Y (x; — Z) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A + B) = trace(B + A),

tmce(Z(xi — )Yz — 7)) = trace(3 Z(mz —Z)(z; — 2)7)

= trace(X'.nS) = n trace(719).

Combining,
L = (2m)~"/2|p| /2 exp{—%n[trace(E_IS) + (@ -2z - pw} [12]

So by the Fisher-Neyman Theorem, (X, S) is sufficient for (u, X). [4]
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Q5. ARMA(1,1).
Xt = ¢Xt—1 + €t —|— 96,5_1 . (]_ — ¢B)Xt = (1 + QB)Et.

Condition for stationarity and invertibility: |¢| < 1; |0] < 1. (2, 2]
Assuming these:

X,=(1-¢B) 1+ 0B)e = (1+ eB)(Z(‘f(piBi)et

=€ + Z:oqbiBiet + QZZOWB"HQ —e+(0+ ¢)Z:o¢i—lBi€t :
Xt = € + (¢ + G)Zi:1¢iilet*i~

Variance: lag 7 = 0. Square and take expectations. The es are uncorrelated

with variance o2, so

Y0 = varX, = B[X?] = o® + (6 +0)°Y ¢ Vo?

+6)%0°
2+% =0*(1—¢* +¢" +200 +6%) /(1 - ¢°) :
Yo = 0*(1+ 200 +6%)/(1 - ¢%) 8]
Covariance: lag T > 1.
Xi =6+ (o+ H)Z;(ﬁjflet#,j.
Multiply the series for X; and X;_, and take expectations:

Vr = COU(Xt, Xt—’T) = E[XtXt—T]a

= {[Et + (gb + 9>Zzl¢i_l€t_i]'[€t_T + (¢ + Q)Zi1¢j_1€t—T—j]}~

The e-term in the first [.] gives no contribution. The i-term in the first []
for i = 7 and the ¢,_, in the second [.] give (¢ + 0)¢" 1o The product
of the 7 term in the first sum and the j term in the second contributes for
i=71+7; for j >1it gives (¢ + 0)*¢" 7 1.¢' 102 So

= (0 +0)670 + (B4 0707y~ U,



The geometric series is 1/(1 — ¢?) as before, so for 7 > 1

(¢+0)¢™ "o

Vr = w-[1—¢2+¢(¢+9)] 3 Ve = 0} (¢+0)(1+00)¢™ "/ (1-¢7).
This decreases geometrically beyond the first term, and this behaviour is
indicative of ARMA(1,1). [8]
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Q6 Poisson with Gamma prior.
Data: © = (xy,---,2,), z; independent, Poisson P(6):

f(z]0) = 7 f(4)0) = 67T FTomem™8 1o oog )V = 7% /11y,

where T := %Exi is the sample mean.
Prior: the Gamma density I'(a,b) (a,b> 0):

abeb—l . .

f8) = Ol (0> 0):
f($|9)f(9) = a—b9n£+b—1e—(n+a)9
-~ T(b)Ilz;! ’

f(0|x) o< f(z]0)f(0) = const.gn=tt—Le=(nta)¥

This has the form of a Gamma density. So, it is a Gamma density,
I'(n 4+ a,nZ 4+ b): the posterior density is

f0)z) = %.emblewaw (6 >0). 8]

Means. For I'(a,b), the mean is
b

B0 = /OOO 0F(0)do = % /OOO 0be=d0, = b/a

(with ¢ := a#, the integral is T'(b + 1)/a*™t, = 0I'(b)/a’™ as T'(z + 1) =
oT(3)) 4]

So by above, the prior mean is b/a; the posterior mean is (nZ+0b)/(n+a);
the data mean is z. Write

A:=a/(n+a), sol—A=n/(n+a): since

nT +b a b n
_ z,

n+a n+aa n+a
posterior mean (nz+b)/(n+a) = A. prior mean b/a+(1—X\). sample mean Z.

Again, this is a weighted average, with weights proportional to n and a.
Now n is the sample size, a measure of the precision of the data, and a is the
rate of decay of the Gamma density, a measure of the precision of the prior
information. [8]
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