
SMF EXAMINATION SOLUTIONS 2016-17

Q1. With `(θ) the log-likelihood, the score function is

s := `′; [2]

the information per reading is

I(θ) := E[{`′(θ)}2] = −E[`′′(θ)] : I(θ) = E[s2(θ)] = E[−s′(θ)]. [2]

In the example given, write v := σ2.

`(v) = log f = const− 1

2
log v − 1

2
(X − µ)2/v,

s(v) := `′(v) = − 1

2v
+

(X − µ)2

2v2
,

s′(v) =
1

2v2
− (X − µ)2

v4
.

The information per reading is

I = I(v) = E[−s′(v)] = − 1

2v2
+
E[(X − µ)2]

v3
= − 1

2v2
+

v

v3
=

1

2v2
. [8]

The CR bound is
1/(nI) = 2v2/n. [2]

Write

S2
0 :=

1

n

n∑
1

(Xi − µ)2. [2]

Then
nS2

0/σ
2 ∼ χ2(n)

(definition of χ2(n)), so has mean n and variance 2n – because χ2(1) has
mean 1 (‘normal variance’) and variance 2 (by an MGF calculation or from
memory). So S2

0 has mean σ2 (so is unbiased for σ2), and variance 2n.σ4/n2 =
2v2/n, the CR bound above, so is efficient for v = σ2. [4]
Seen – lectures (bookwork) and problems (example).
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Q2. Lognormal distribution; normal means.
X has the log-normal distribution with parameters µ and σ, X ∼ LN(µ, σ),

if Y := logX ∼ N(µ, σ2). [2]
The MGF of Y is MY (t) := E[etY ] = exp{µt + 1

2
σ2t2}: MY (1) = E[eY ] =

exp{µ+ 1
2
σ2}.

But eY = X: E[X] = exp{µ+ 1
2
σ2}: LN(µ, σ) has mean exp{µ+ 1

2
σ2 }. [3]

In geometric Brownian motion (GBM), as in the Black-Scholes model, the
price process S = (St) of a risky asset is driven by the SDE

dSt/St = µdt+ σdWt, (GBM)

with W = (Wt) Brownian motion/the Wiener process. This has solution

St = S0 exp{(µ− 1

2
σ2)t+ σWt} :

logSt is lognormally distributed. [5]
For a normal population N(µ, σ) with σ known: to test H0 : µ = µ0 v.

H1 : µ < µ0. First, take any µ1 < µ0. To test H0 v. µ = µ1, by the Neyman-
Pearson Lemma (NP), the best (most powerful) test uses test statistic the
likelihood ratio (LR) λ := L0/L1 = L(µ0)/L(µ1), where with data x1, . . . , xn

L(µ) = σ−n(2π)−
1
2
n exp{−1

2

n∑
1

(xi − µ)2/σ2},

and critical region R of the form λ ≤ const: reject H0 if λ is too small. Here
λ = exp{−1

2
[
∑

(xi− µ0)2−
∑

(xi− µ1)2]}. Forming the LR λ, the constants
cancel, so R has the form log λ ≤ const, or −2 log λ ≥ const. Expanding the
squares, the

∑
x2
i terms cancel, so (as

∑
xi = nx̄) this is

−2µ0nx̄+ nµ2
0 + 2µ1nx̄− nµ2

1 ≥ const : 2(µ1 − µ0)x̄+ (µ2
0 − µ2

1) ≥ const.

As µ1 < µ0, this is x̄ ≤ c. At significance level α, c is the lower α-point
of the distribution of x̄ under H0. Then x̄ ∼ N(µ0, σ

2/n), so Z := (x̄ −
µ0)
√
n/σ ∼ Φ = N(0, 1). If cα is the lower σ-point of Φ = N(0, 1), i.e. of

Z := (x̄− µ0)
√
n/σ , cα = (c− µ0)

√
n/σ: c = µ0 + σcα/

√
n. [7]

But this holds for all µ1 < µ0. So R is uniformly most powerful (UMP)
for H0 : µ = µ0 (simple null) v. H1 : µ < µ0 (composite alternative). [3]
[Seen – lectures]
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Q3. (i) Markowitz’ work of 1952 (which led on to CAPM in the 1960s) gave
two key insights:
(a). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis, efficient frontier, etc. – maximise return for a
given level of risk/minimise risk for a given return rate). [2]
(b). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, losses on some assets will be offset by gains on others. [2]
Hence the vector-matrix parameter (µ,Σ) is accepted as an essential part of
any model in mathematical finance.
(ii) Elliptical distributions.

The normal density in higher dimensions is a multiple of exp{−1
2
(x −

µ)TΣ−1(x−µ)}, where the matrices Σ, Σ−1 are positive definite (PD), so the
contours (x− µ)TΣ−1(x− µ) = const. are ellipsoids. The general elliptically
contoured distribution has a density

f(x) = const.g(x− µ)TΣ−1(x− µ)).

This is a semi-parametric model, where θ := (µ, σ) is the parametric part
and the density generator g is the non-parametric part. [4]

(iii) Normal (Gaussian) model: elliptically contoured (g(.) = e−
1
2
.). Though

very useful, it has various deficiencies, e.g.:
(a) It is symmetric. Many financial data sets show asymmetry, or skew. This
reflects the asymmetry between profit and loss. Big profits are nice; big losses
can be lethal (to the firm – bankruptcy). [3]
(b) It has extremely thin tails. Most financial data sets have tails that are
much fatter than the ultra-thin normal tails. [3]
(iv) For asset returns (= profit/loss over initial asset price) over a period,
the return period: matters vary dramatically with the return period.
(a) For long return periods (monthly, say – the Rule of Thumb is that 16
trading days suffice), the CLT applies, and asset returns are approximately
normal (‘aggregational Gaussianity). [2]
(ib) For intermediate return periods (daily, say), a commonly used model is
the generalised hyperbolic (GH) – log-density a hyperbola, with linear asymp-
totes, so density decays like the exponential of a linear function). [2]
(c) For high-frequency returns (‘tick data’, say – every few seconds), the den-
sity typically decays like a power (as with the Student t distribution). [2]
Seen – lectures.
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Q4 (Sufficiency for the multivariate normal). Given a sample x1, . . . , xn from
a multivariate distribution, form the sample mean (vector) and the sample
covariance matrix as in the one-dimensional case:

x̄ :=
1

n

n∑
i=1

xi, S :=
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . [2,2]

(i) The multivariate normal distribution (in d dimensions) N(µ,Σ) (µ a d-
vector, Σ an d × d symmetric positive definite matrix) has density (Edge-
worth’s Theorem)

f(x) :=
1

(2π)
1
2
d|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}.

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.

Writing xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑

(xi − x̄) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1

n∑
1

(xi − x̄)(xi − x̄)T )

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n[trace(Σ−1S) + (x̄− µ)TΣ−1(x̄− µ)]}. [12]

So by the Fisher-Neyman Theorem, (X̄, S) is sufficient for (µ,Σ). [4]
(Seen – lectures)
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Q5. ARMA(1, 1).

Xt = φXt−1 + εt + θεt−1 : (1− φB)Xt = (1 + θB)εt.

Condition for stationarity and invertibility: |φ| < 1; |θ| < 1. [2, 2]
Assuming these:

Xt = (1− φB)−1(1 + θB)εt = (1 + θB)(
∑∞

0
φiBi)εt

= εt +
∑∞

1
φiBiεt + θ

∑∞

0
φiBi+1εt = εt + (θ + φ)

∑∞

1
φi−1Biεt :

Xt = εt + (φ+ θ)
∑∞

i=1
φi−1εt−i.

Variance: lag τ = 0. Square and take expectations. The εs are uncorrelated
with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (φ+ θ)2

∑∞

1
φ2(i−1)σ2

= σ2 +
(φ+ θ)2σ2

(1− φ2)
= σ2(1− φ2 + φ2 + 2φθ + θ2)/(1− φ2) :

γ0 = σ2(1 + 2φθ + θ2)/(1− φ2) [8]

Covariance: lag τ ≥ 1.

Xt−τ = εt−τ + (φ+ θ)
∑∞

j=1
φj−1εt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],

= {[εt + (φ+ θ)
∑∞

i=1
φi−1εt−i].[εt−τ + (φ+ θ)

∑∞

j=1
φj−1εt−τ−j]}.

The εt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the εt−τ in the second [.] give (φ + θ)φτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (φ+ θ)2φτ+j−1.φj−1.σ2. So

γτ = (φ+ θ)φτ−1σ2 + (φ+ θ)2φτσ2
∑∞

j=1
φ2(j−1).
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The geometric series is 1/(1− φ2) as before, so for τ ≥ 1

γτ =
(φ+ θ)φτ−1σ2

(1− φ2)
.[1−φ2+φ(φ+θ)] : γτ = σ2(φ+θ)(1+φθ)φτ−1/(1−φ2).

This decreases geometrically beyond the first term, and this behaviour is
indicative of ARMA(1, 1). [8]
(Seen – lectures and problems)
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Q6 Poisson with Gamma prior.
Data: x = (x1, · · · , xn), xi independent, Poisson P (θ):

f(x|θ) = Πn
1f(xi|θ) = θx1+···+xne−nθ/x1! · · · xn! = θnx̄e−nθ/Πxi!,

where x̄ := 1
n
Σxi is the sample mean.

Prior: the Gamma density Γ(a, b) (a, b > 0):

f(θ) =
abθb−1

Γ(b)
e−aθ (θ > 0) :

f(x|θ)f(θ) =
ab

Γ(b)Πxi!
θnx̄+b−1e−(n+a)θ,

f(θ|x) ∝ f(x|θ)f(θ) = const.θnx̄+b−1e−(n+a)θ.

This has the form of a Gamma density. So, it is a Gamma density,
Γ(n+ a, nx̄+ b): the posterior density is

f(θ|x) =
(n+ a)nx̄+b

Γ(nx̄+ b)
.θnx̄+b−1e−(n+a)θ (θ > 0). [8]

Means. For Γ(a, b), the mean is

Eθ =

∫ ∞
0

θf(θ)dθ =
ab

Γ(b)
.

∫ ∞
0

θbe−aθdθ,= b/a

(with t := aθ, the integral is Γ(b + 1)/ab+1,= bΓ(b)/ab+1 as Γ(x + 1) =
xΓ(x)). [4]

So by above, the prior mean is b/a; the posterior mean is (nx̄+b)/(n+a);
the data mean is x̄. Write

λ := a/(n+ a), so 1− λ = n/(n+ a) : since

nx̄+ b

n+ a
=

a

n+ a
.
b

a
+

n

n+ a
.x̄,

posterior mean (nx̄+b)/(n+a) = λ. prior mean b/a+(1−λ). sample mean x̄.

Again, this is a weighted average, with weights proportional to n and a.
Now n is the sample size, a measure of the precision of the data, and a is the
rate of decay of the Gamma density, a measure of the precision of the prior
information. [8]
[Seen – lectures]
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