SMF EXAMINATION SOLUTIONS 2016-17

Q1. With $\ell(\theta)$ the log-likelihood, the score function is

$$s := \ell';$$
 [2]

the *information per reading* is

$$I(\theta) := E[\{\ell'(\theta)\}^2] = -E[\ell''(\theta)]: \quad I(\theta) = E[s^2(\theta)] = E[-s'(\theta)].$$
 [2]

In the example given, write $v := \sigma^2$.

$$\ell(v) = \log f = const - \frac{1}{2}\log v - \frac{1}{2}(X - \mu)^2/v,$$

$$s(v) := \ell'(v) = -\frac{1}{2v} + \frac{(X - \mu)^2}{2v^2},$$

$$s'(v) = \frac{1}{2v^2} - \frac{(X - \mu)^2}{v^4}.$$

The information per reading is

$$I = I(v) = E[-s'(v)] = -\frac{1}{2v^2} + \frac{E[(X-\mu)^2]}{v^3} = -\frac{1}{2v^2} + \frac{v}{v^3} = \frac{1}{2v^2}.$$
 [8]

The CR bound is

$$1/(nI) = 2v^2/n.$$
 [2]

Write

$$S_0^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$
 [2]

Then

$$nS_0^2/\sigma^2 \sim \chi^2(n)$$

(definition of $\chi^2(n)$), so has mean n and variance 2n – because $\chi^2(1)$ has mean 1 ('normal variance') and variance 2 (by an MGF calculation or from memory). So S_0^2 has mean σ^2 (so is unbiased for σ^2), and variance $2n \cdot \sigma^4/n^2 = 2v^2/n$, the CR bound above, so is efficient for $v = \sigma^2$. [4] Seen – lectures (bookwork) and problems (example).

Q2. Lognormal distribution; normal means.

X has the *log-normal* distribution with parameters μ and σ , $X \sim LN(\mu, \sigma)$, if $Y := \log X \sim N(\mu, \sigma^2)$. [2] The MGF of Y is $M_Y(t) := E[e^{tY}] = \exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$: $M_Y(1) = E[e^Y] = \exp\{\mu + \frac{1}{2}\sigma^2\}$.

But $e^Y = X$: $E[X] = \exp\{\mu + \frac{1}{2}\sigma^2\}$: $LN(\mu, \sigma)$ has mean $\exp\{\mu + \frac{1}{2}\sigma^2\}$. [3]

In geometric Brownian motion (GBM), as in the Black-Scholes model, the price process $S = (S_t)$ of a risky asset is driven by the SDE

$$dS_t/S_t = \mu dt + \sigma dW_t, \qquad (GBM)$$

with $W = (W_t)$ Brownian motion/the Wiener process. This has solution

$$S_t = S_0 \exp\{(\mu - \frac{1}{2}\sigma^2)t + \sigma W_t\}$$
:

 $\log S_t$ is lognormally distributed.

For a normal population $N(\mu, \sigma)$ with σ known: to test $H_0 : \mu = \mu_0$ v. $H_1 : \mu < \mu_0$. First, take any $\mu_1 < \mu_0$. To test H_0 v. $\mu = \mu_1$, by the Neyman-Pearson Lemma (NP), the best (most powerful) test uses test statistic the likelihood ratio (LR) $\lambda := L_0/L_1 = L(\mu_0)/L(\mu_1)$, where with data x_1, \ldots, x_n

$$L(\mu) = \sigma^{-n} (2\pi)^{-\frac{1}{2}n} \exp\{-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2\},\$$

and critical region R of the form $\lambda \leq \text{const: reject } H_0$ if λ is too small. Here $\lambda = \exp\{-\frac{1}{2}[\sum (x_i - \mu_0)^2 - \sum (x_i - \mu_1)^2]\}$. Forming the LR λ , the constants cancel, so R has the form $\log \lambda \leq \text{const, or } -2\log \lambda \geq \text{const. Expanding the squares, the } \sum x_i^2$ terms cancel, so (as $\sum x_i = n\bar{x}$) this is

$$-2\mu_0 n\bar{x} + n\mu_0^2 + 2\mu_1 n\bar{x} - n\mu_1^2 \ge \text{const}: \quad 2(\mu_1 - \mu_0)\bar{x} + (\mu_0^2 - \mu_1^2) \ge \text{const}.$$

As $\mu_1 < \mu_0$, this is $\bar{x} \leq c$. At significance level α , c is the lower α -point of the distribution of \bar{x} under H_0 . Then $\bar{x} \sim N(\mu_0, \sigma^2/n)$, so $Z := (\bar{x} - \mu_0)\sqrt{n}/\sigma \sim \Phi = N(0, 1)$. If c_α is the lower σ -point of $\Phi = N(0, 1)$, i.e. of $Z := (\bar{x} - \mu_0)\sqrt{n}/\sigma$, $c_\alpha = (c - \mu_0)\sqrt{n}/\sigma$: $c = \mu_0 + \sigma c_\alpha/\sqrt{n}$. [7]

But this holds for all $\mu_1 < \mu_0$. So R is uniformly most powerful (UMP) for $H_0: \mu = \mu_0$ (simple null) v. $H_1: \mu < \mu_0$ (composite alternative). [3] [Seen – lectures]

Q3. (i) Markowitz' work of 1952 (which led on to CAPM in the 1960s) gave two key insights:

(a). Think of risk and return together, not separately. Now return corresponds to mean (= mean rate of return), risk corresponds to variance – hence mean-variance analysis, efficient frontier, etc. – maximise return for a given level of risk/minimise risk for a given return rate). [2] (b). Diversify (don't 'put all your eggs in one basket'). Hold a balanced portfolio – a range of risky assets, with lots of negative correlation – so that when things change, losses on some assets will be offset by gains on others. [2] Hence the vector-matrix parameter (μ, Σ) is accepted as an essential part of any model in mathematical finance.

(ii) Elliptical distributions.

The normal density in higher dimensions is a multiple of $\exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$, where the matrices Σ , Σ^{-1} are *positive definite* (PD), so the contours $(x-\mu)^T \Sigma^{-1}(x-\mu) = \text{const.}$ are *ellipsoids*. The general *elliptically contoured* distribution has a density

$$f(x) = const.g(x-\mu)^T \Sigma^{-1}(x-\mu)).$$

This is a *semi-parametric* model, where $\theta := (\mu, \sigma)$ is the parametric part and the *density generator* g is the non-parametric part. [4] (iii) *Normal (Gaussian) model*: elliptically contoured $(g(.) = e^{-\frac{1}{2}})$. Though very useful, it has various deficiencies, e.g.:

(a) It is *symmetric*. Many financial data sets show asymmetry, or *skew*. This reflects the asymmetry between profit and loss. Big profits are nice; big losses can be lethal (to the firm – bankruptcy). [3]

(b) It has extremely thin tails. Most financial data sets have tails that are *much fatter* than the ultra-thin normal tails. [3]

(iv) For asset returns (= profit/loss over initial asset price) over a period, the *return period*: matters vary dramatically with the return period.

(a) For *long* return periods (monthly, say – the Rule of Thumb is that 16 trading days suffice), the CLT applies, and asset returns are approximately *normal* ('aggregational Gaussianity). [2]

(ib) For *intermediate* return periods (daily, say), a commonly used model is the *generalised hyperbolic* (GH) – log-density a hyperbola, with linear asymptotes, so density decays like the exponential of a linear function). [2]

(c) For *high-frequency* returns ('tick data', say – every few seconds), the density typically decays like a power (as with the Student t distribution). [2] Seen – lectures.

Q4 (Sufficiency for the multivariate normal). Given a sample x_1, \ldots, x_n from a multivariate distribution, form the sample mean (vector) and the sample covariance matrix as in the one-dimensional case:

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad S := \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})^T.$$
 [2,2]

(i) The multivariate normal distribution (in d dimensions) $N(\mu, \Sigma)$ (μ a d-vector, Σ an $d \times d$ symmetric positive definite matrix) has density (Edgeworth's Theorem)

$$f(\mathbf{x}) := \frac{1}{(2\pi)^{\frac{1}{2}d} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\}.$$

The likelihood for a sample of size 1 is

$$L(x|\mu, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\},\$$

so the likelihood for a sample of size n is

$$L = (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\{-\frac{1}{2} \sum_{1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\}.$$

Writing $x_i - \mu = (x_i - \bar{x}) - (\mu - \bar{x}),$

$$\sum_{1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) = \sum_{1}^{n} (x_i - \bar{x})^T \Sigma^{-1} (x_i - \bar{x}) + n(\bar{x} - \mu)^T \Sigma^{-1} (\bar{x} - \mu)$$

(the cross-terms cancel as $\sum (x_i - \bar{x}) = 0$). The summand in the first term on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)and trace(A + B) = trace(B + A),

$$trace(\sum_{1}^{n} (x_{i} - \bar{x})^{T} \Sigma^{-1} (x_{i} - \bar{x})) = trace(\Sigma^{-1} \sum_{1}^{n} (x_{i} - \bar{x}) (x_{i} - \bar{x})^{T})$$
$$= trace(\Sigma^{-1} \cdot nS) = n \ trace(\Sigma^{-1} S).$$

Combining,

$$L = (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\{-\frac{1}{2}n[trace(\Sigma^{-1}S) + (\bar{x} - \mu)^T \Sigma^{-1}(\bar{x} - \mu)]\}.$$
 [12]

So by the Fisher-Neyman Theorem, (\bar{X}, S) is sufficient for (μ, Σ) . [4] (Seen – lectures)

Q5. ARMA(1, 1).

$$X_t = \phi X_{t-1} + \epsilon_t + \theta \epsilon_{t-1} : \qquad (1 - \phi B) X_t = (1 + \theta B) \epsilon_t.$$

Condition for stationarity and invertibility: $|\phi| < 1$; $|\theta| < 1$. [2, 2] Assuming these:

$$X_t = (1 - \phi B)^{-1} (1 + \theta B) \epsilon_t = (1 + \theta B) (\sum_0^\infty \phi^i B^i) \epsilon_t$$
$$= \epsilon_t + \sum_1^\infty \phi^i B^i \epsilon_t + \theta \sum_0^\infty \phi^i B^{i+1} \epsilon_t = \epsilon_t + (\theta + \phi) \sum_1^\infty \phi^{i-1} B^i \epsilon_t :$$
$$X_t = \epsilon_t + (\phi + \theta) \sum_{i=1}^\infty \phi^{i-1} \epsilon_{t-i}.$$

Variance: lag $\tau = 0$. Square and take expectations. The ϵ s are uncorrelated with variance σ^2 , so

$$\gamma_0 = var X_t = E[X_t^2] = \sigma^2 + (\phi + \theta)^2 \sum_{1}^{\infty} \phi^{2(i-1)} \sigma^2$$
$$= \sigma^2 + \frac{(\phi + \theta)^2 \sigma^2}{(1 - \phi^2)} = \sigma^2 (1 - \phi^2 + \phi^2 + 2\phi\theta + \theta^2) / (1 - \phi^2) :$$
$$\gamma_0 = \sigma^2 (1 + 2\phi\theta + \theta^2) / (1 - \phi^2)$$
[8]

Covariance: lag $\tau \geq 1$.

$$X_{t-\tau} = \epsilon_{t-\tau} + (\phi + \theta) \sum_{j=1}^{\infty} \phi^{j-1} \epsilon_{t-\tau-j}.$$

Multiply the series for X_t and $X_{t-\tau}$ and take expectations:

$$\gamma_{\tau} = cov(X_t, X_{t-\tau}) = E[X_t X_{t-\tau}],$$
$$= \{ [\epsilon_t + (\phi + \theta) \sum_{i=1}^{\infty} \phi^{i-1} \epsilon_{t-i}] . [\epsilon_{t-\tau} + (\phi + \theta) \sum_{j=1}^{\infty} \phi^{j-1} \epsilon_{t-\tau-j}] \}.$$

The ϵ_t -term in the first [.] gives no contribution. The *i*-term in the first [.] for $i = \tau$ and the $\epsilon_{t-\tau}$ in the second [.] give $(\phi + \theta)\phi^{\tau-1}\sigma^2$. The product of the *i* term in the first sum and the *j* term in the second contributes for $i = \tau + j$; for $j \ge 1$ it gives $(\phi + \theta)^2 \phi^{\tau+j-1} \cdot \phi^{j-1} \cdot \sigma^2$. So

$$\gamma_{\tau} = (\phi + \theta)\phi^{\tau - 1}\sigma^2 + (\phi + \theta)^2\phi^{\tau}\sigma^2 \sum_{j=1}^{\infty} \phi^{2(j-1)}.$$

The geometric series is $1/(1-\phi^2)$ as before, so for $\tau \ge 1$

$$\gamma_{\tau} = \frac{(\phi + \theta)\phi^{\tau - 1}\sigma^2}{(1 - \phi^2)} \cdot [1 - \phi^2 + \phi(\phi + \theta)]: \qquad \gamma_{\tau} = \sigma^2(\phi + \theta)(1 + \phi\theta)\phi^{\tau - 1}/(1 - \phi^2).$$

This decreases geometrically beyond the first term, and this behaviour is indicative of ARMA(1,1). [8] (Seen – lectures and problems)

Q6 Poisson with Gamma prior.

Data: $x = (x_1, \dots, x_n), x_i$ independent, Poisson $P(\theta)$:

$$f(x|\theta) = \prod_{i=1}^{n} f(x_i|\theta) = \theta^{x_1 + \dots + x_n} e^{-n\theta} / x_1! \cdots x_n! = \theta^{n\bar{x}} e^{-n\theta} / \prod x_i!,$$

where $\bar{x} := \frac{1}{n} \Sigma x_i$ is the sample mean. Prior: the Gamma density $\Gamma(a, b)$ (a, b > 0):

$$f(\theta) = \frac{a^{b}\theta^{b-1}}{\Gamma(b)}e^{-a\theta} \qquad (\theta > 0):$$

$$f(x|\theta)f(\theta) = \frac{a^{b}}{\Gamma(b)\Pi x_{i}!}\theta^{n\bar{x}+b-1}e^{-(n+a)\theta},$$

$$f(\theta|x) \propto f(x|\theta)f(\theta) = const.\theta^{n\bar{x}+b-1}e^{-(n+a)\theta}$$

This has the form of a Gamma density. So, it is a Gamma density, $\Gamma(n + a, n\bar{x} + b)$: the posterior density is

$$f(\theta|x) = \frac{(n+a)^{n\bar{x}+b}}{\Gamma(n\bar{x}+b)} \cdot \theta^{n\bar{x}+b-1} e^{-(n+a)\theta} \qquad (\theta > 0).$$
 [8]

Means. For $\Gamma(a, b)$, the mean is

$$E\theta = \int_0^\infty \theta f(\theta) d\theta = \frac{a^b}{\Gamma(b)} \cdot \int_0^\infty \theta^b e^{-a\theta} d\theta, = b/a$$

(with $t := a\theta$, the integral is $\Gamma(b+1)/a^{b+1} = b\Gamma(b)/a^{b+1}$ as $\Gamma(x+1) = x\Gamma(x)$). [4]

So by above, the prior mean is b/a; the posterior mean is $(n\bar{x}+b)/(n+a)$; the data mean is \bar{x} . Write

$$\lambda := a/(n+a), \quad \text{so } 1 - \lambda = n/(n+a): \quad \text{since}$$
$$\frac{n\bar{x}+b}{n+a} = \frac{a}{n+a} \cdot \frac{b}{a} + \frac{n}{n+a} \cdot \bar{x},$$

posterior mean $(n\bar{x}+b)/(n+a) = \lambda$. prior mean $b/a+(1-\lambda)$. sample mean \bar{x} .

Again, this is a weighted average, with weights proportional to n and a. Now n is the sample size, a measure of the precision of the data, and a is the rate of decay of the Gamma density, a measure of the precision of the prior information. [8]

[Seen – lectures]