
SMF SOLUTIONS TO MOCK EXAMINATION. 2012

Q1. (i) With ℓ := logL the log-likelihood, the score function is

s(θ) := ℓ′(θ). [2]

The information is
I(θ) := E[s(θ)2] = −E[s′(θ)] [2]

(we shall see below that these are equal – either will do here).
We have a joint density f = f(x1, . . . , xn; θ), which we write as f =

f(x; θ). This integrates to 1:
∫
f(x; θ)dx = 1 (where dx is n-dimensional

Lebesgue measure), which we abbreviate to
∫
f = 1. We assume throughout

that f(x; θ) is smooth enough for use to differentiate under the integral sign
(w.r.t. dx, understood) w.r.t. θ, twice. Then∫ ∂f

∂θ
=

∂

∂θ

∫
f =

∂

∂θ
1 = 0 :

∫ ( 1
f

∂f

∂θ

)
.f = 0 :

∫ ( ∂
∂θ

log f
)
.f = 0.

Now E[g(X)] =
∫
g(x)f(x; θ)dx =

∫
gf , so this says

E
[∂ logL

∂θ

]
= 0 : E

[∂ℓ
∂θ

]
= 0 : E[ℓ′(θ)] = 0 : E[s(θ)] = 0. (a) [6]

Differentiate under the integral sign wrt θ again:

∂

∂θ

∫ ( 1
f

∂f

∂θ

)
.f = 0,

∫ ∂

∂θ

[( 1
f

∂f

∂θ

)
.f

]
= 0 :

∫ [( 1
f

∂f

∂θ

)∂f
∂θ

+ f
∂

∂θ

( 1
f

∂f

∂θ

)]
= 0.

As the bracket in the second term is ∂ log f/∂θ, this says∫ [( 1
f

∂f

∂θ

)2
+

∂

∂θ

(∂ log f
∂θ

)]
f = 0,

∫ [(∂ log f
∂θ

)2
+

∂2

∂θ2
(log f)

]
f = 0,

E
[( ∂
∂θ

logL
)2
+
∂2

∂θ2
logL

]
= 0 : E[{ℓ′(θ)}2+ℓ′′(θ)] = 0 : E[s(θ)2+s′(θ)] = 0.

So with

I(θ) := E[{ℓ′(θ)}2] = −E[ℓ′′(θ)] : I(θ) = E[s2(θ)] = −E[s′(θ)], (b) [6]

giving the equivalence of the two definitions above. By (a) and (b):
The score function s(θ) := ℓ′(θ) has mean 0 and variance I(θ). [4]
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Q2. Sufficiency. We choose the Bayesian framework, as it is easier (for the
non-Bayesian approach, see lectures, Day 2).
(i) If x = (x1, x2), we call x1 sufficient for θ if x2 is uninformative about θ,
i.e. does not affect our views on θ, that is,
(a) f(θ|x) = f(θ|x1, x2) does not depend on x2, i.e.

f(θ|x1, x2) = f(θ|x1), or
f(θ, x1, x2)

f(x1, x2)
=
f(θ, x1)

f(x1)
:

f(θ, x1, x2)

f(θ, x1)
=
f(x1, x2)

f(x1)
, i.e. f(x2|x1, θ) = f(x2|x1) :

(b) f(x2|x1, θ) does not depend on θ.
Either of (a), (b), which are equivalent, can be used as the definition of suf-
ficiency in a Bayesian treatment. [Notice that (a) is essentially a Bayesian
statement: it is meaningless in classical statistics, as there θ cannot have a
density.] [6]

The Fisher-Neyman Factorisation Criterion for sufficiency is that the like-
lihood f(x|θ) factorises as
(c) f(x|θ), or f(x1, x2|θ), = g(x1, θ)h(x1, x2),
for some functions g, h. The Fisher-Neyman Theorem is that this is neces-
sary and sufficient: x1 is sufficient for θ iff the Factorisation Criterion (c)
holds. [6]

Proof. (b) ⇒ (c):

f(x|θ) = f(x1, x2|θ) =
f(x1, x2, θ)

f(θ)

=
f(x1, θ)

f(θ)
.
f(x1, x2, θ)

f(x1, θ)

= f(x1|θ)f(x2|x1, θ)
= f(x1|θ)f(x2|x1) (by (b)),

giving (c).
(c) ⇒ (a): By Bayes’ Theorem, posterior is proportional to prior times like-
lihood. The factor h(x1, x2) in (c) can be absorbed into the constant of
proportionality. Then x2 disappears, so does not appear in the posterior,
giving (a). // [8]
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Q3. Normal means N(µ, σ2), σ unknown.
The likelihood ratio test (LRT) for H0 v. H1, where H0 ⊂ H1, is to let

λi := supHi
L, define the likelihood ratio statistic (LR) as λ := L0/L1, and

reject H0 if λ is too small. [2]

H0 : µ = µ0 v. H1 : µ unrestricted.

L =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ)2/σ2},

L0 =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2} =

1

σn(2π)n/2
. exp{−1

2
nS2

0/σ
2},

in an obvious notation. The MLEs under H1 are µ̂ = X̄, σ̂2 = S2, as usual
(and as in lectures). Similarly (though more simply), under H0, we obtain
σ = S0. So

L1 =
e−

1
2
n

Sn(2π)
1
2
n
; L0 =

e−
1
2
n

Sn
0 (2π)

1
2
n
.

So
λ := L0/L1 = Sn/Sn

0 ,

and the LR test is: reject if λ is too small. [8]
Now

nS2
0 =

n∑
1

(Xi − µ0)
2 =

∑
[(Xi − X̄) + (X̄ − µ0)]

2

=
∑

(Xi − X̄)2 + n(X̄ − µ0)
2 = nS2 + n(X̄ − µ0)

2

(as
∑
(Xi − X̄) = 0):

S2
0

S2
= 1 +

(X̄ − µ0)
2

S2
.

But t := (X̄ − µ0)
√
n− 1/S has the Student t-distribution t(n − 1) with n

df under H0, so
S2
0/S

2 = 1 + t2/(n− 1).

The LR test is: reject if
λ = (S/S0)

n too small;
S2
0/S

2 = 1 + t2/(n− 1) too big;
t2 too big: |t| too big, which is the Student t-test:
The LR test here is the Student t-test. [10]
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Q4. AR(2).

Xt =
1

3
Xt−1 +

2

9
Xt−2 + ϵt, (ϵt) WN. (1)

Moving-average representation. Let the MA representation of (Xt) be

Xt =
∑∞

i=0
ψiϵt−i. (2)

Substitute (2) into (1):∑∞
0
ψiϵt−i =

1

3

∑∞
0
ψiϵt−i−1 +

2

9

∑∞
0
ψiϵt−2−i + ϵt

=
1

3

∑∞
1
ψi−1ϵt−i +

2

9

∑∞
2
ψi−2ϵt−i + ϵt.

Equate coefficients of ϵt−i:
i = 0 gives ψ0 = 1; i = 1 gives ψ1 =

1
3
ψ0 = 1/3; i ≥ 2 gives

ψi =
1

3
ψi−1 +

2

9
ψi−2.

This is again a difference equation, which we solve as above. The character-
istic polynomial is

λ2 − 1

3
λ− 2

9
= 0, or (λ− 2

3
)(λ+

1

3
) = 0,

with roots λ1 = 2/3 and λ2 = −l/3. The general solution of the difference
equation is thus ψi = c1λ

i
1 + c2λ

i
2 = c1(2/3)

i + c2(−1/3)i. We can find c1, c2
from the values of ψ0, ψ1, found above:
i = 0 gives c1 + c2 = 0, or c2 = 1− c1.
i = 1 gives c1.(2/3)+(1−c1)(−1/3) = ψ1 = 1/3: 2c1−(1−c1) = 1: c1 = 2/3,
c2 = 1/3. So

ψi =
2

3
(
2

3
)i +

1

3
(
−1

3
)i = (

2

3
)i+1 − (

−1

3
)i+1,

and

Xt =
∑∞

0
[(
2

3
)i+1 − (

−1

3
)i+1]ϵt−i,

giving the MA representation. [14]
The Yule-Walker equations are

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2).

We solve this difference equation as above, obtaining ρ(k) = aλk1 + bλk2, and
find a, b from the first few values, again as above. [3, 3]
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Q5. (i) With time t discrete: if X = (Xt) has M := suptE[|Xt|] < ∞ and
ψ = (ψj) ∈ ℓ1, i.e. ∥ψ∥1 :=

∑∞
−∞ |ψj| <∞ – then

E[
∑
j

|ψj||Xt−j|] =
∑
j

|ψj|E[|Xt−j|] ≤M∥ψ∥1 <∞

(interchanging E and
∑

by Fubini’s theorem), so
∑

j |ψj||Xt−j| < ∞ a.s.:∑
ψjXt−j is a.s. absolutely convergent, to S say. [4]

Then
|
∑
|j|>n

ψjXt−j| ≤M |
∑
|j|>n

ψj| → 0 (n→ ∞)

(tail of a convergent series), so
∑
ψiXt−j converges to S in ℓ1 also. [4]

(ii) If ψ ∈ ℓ1,
∑ |ψj| < ∞. So ψj → 0, so is bounded: |ψj| ≤ K say. Then∑

j |ψj|2 ≤ C
∑

j |ψj| = K∥ψ∥1 <∞, i.e. ψ ∈ ℓ2. So ℓ1 ⊂ ℓ2. [4]
(iii) If C := suptE[|Xt|2] <∞: take n > m > 0; then

E[|
∑

m<|j|≤n

ψiXt−j|2] =
∑

m<j≤n

∑
m<k≤n

ψjψkE[Xt−jXt−k].

Now |E[Xt−jXt−k]| ≤
√
E[|Xt−j|2].E[|Xt−k|2] ≤ C, by the Cauchy-Schwarz

inequality. So the RHS

≤ C
∑

m<j≤n

∑
m<k≤n

ψjψk = C|
∑

m<j≤n

ψj|2 → 0 (m,n→ ∞),

as ψ ∈ ℓ1. So by completeness of ℓ2,
∑
ψjXt−j converges in ℓ2 (that is, in

mean square) – to S ′, say. Then by Fatou’s Lemma

E[|S ′−
∑
j

ψjXt−j|2] = E[lim inf
n

|S ′−
n∑
−n

ψjXt−j|2] ≤ lim inf
n

E[|S ′−
n∑
−n

ψjXt−j|2] = 0,

as
∑
ψjXt−j converges to S in ℓ2. So S ′ =

∑
j ψjXt−j = S a.s.: the a.s., ℓ1

and ℓ2 limits coincide. // [8]
Note. The a.s. convergence also follows from Kolmogorov’s theorem on
random series: ψjXt−j has variance

var(ψjXt−j) = ψ2
j var(Xt−j) ≤ ψ2

j sup
t
E[X2

t ] = Cψ2
j ,

so
∑

j var(ψjXt−j) converges as ψ ∈ ℓ2. The same bound also gives ℓ2-
convergence, by dominated convergence.
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Q6. (i) (Rank-one matrices). If C is the zero matrix, it has rank 0 – a trivial
case, which we exclude.

If C has rank one, the range of C is one-dimensional (this is one of several
equivalent definitions of rank). If the domain and range of C have bases ei, fj,
Cei is non-zero for some i (or C would be zero) – w.l.o.g., Ce1 =

∑
j c1jfj ̸= 0.

Write bj := c1j: Ce1 =
∑

j bjfj ̸= 0. As the range of C is one-dimensional,
for each i, Cei is a multiple aiCe1 of Ce1: Cei =

∑
j aibjfj. This says that

the linear transformation represented by C has matrix C = (cij) = (aibj)
w.r.t. the bases ei and fj.

Conversely, if C = (aibj) is not the zero matrix: at least one aibj ̸= 0;
w.l.o.g., by re-ordering rows and columns, take a1, b1 ̸= 0. Then column j is
the multiple bj/b1 of column 1, and row i is the multiple ai/a1 of row 1. So
C has column-rank 1 (only 1 linearly independent column), and row-rank 1,
so has rank 1. [10]
(ii) With a the column-vector (a, 1, 1)T , A = aaT . So A has rank 1, and as
it is 3× 3, it has one non-zero eigenvalues and two 0 eigenvalues.

Aa = aaTa = (a2 + 2)a,

as aTa = a2 + 2. This says that A has eigenvalue a2 + 2 with eigenvec-
tor a. The other two eigenvalues are 0, with eigenvectors x, y say. The
eigenequation for x = (x1, x2, x3)

T is

ax1 + x2 + x3 = 0,

three times (check). Taking x3 = 0, we can take x1 = 1, x2 = −a; taking
x1 = 0, we can take x2 = 1, x3 = 1, giving

x =

 1
−a
0

 , y =

 0
1
−1

 . [10]
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