SMF SOLUTIONS TO MOCK EXAMINATION. 2012
Q1. (i) With ¢ :=log L the log-likelihood, the score function is

s(0) = ('(6). (2]
The information is
1(6) == E[s(9)’] = —E[s'(9)] 2]
(we shall see below that these are equal — either will do here).
We have a joint density f = f(z1,...,2,;0), which we write as f =
f(z;0). This integrates to 1: [ f(x;0)dx = 1 (where dz is n-dimensional
Lebesgue measure), which we abbreviate to [ f = 1. We assume throughout

that f(x;60) is smooth enough for use to differentiate under the integral sign
(W.r.t. dx, understood) w.r.t. 6, twice. Then

1Of 0
90 ae/f *1_0 /<f69)'f:0: /(aelogf)f
Now E[g(X)] = [g(x)f(z;0)dx = [ gf, so this says

E[alggﬂ _0: E[gg] 0: E[O)]=0: E}s(@)]=0. (a) [6]
Differentiate under the integral sign wrt 6 again:
1 8f _0 1 8f _0.
(‘36 f 89 ’ 88 f (‘36 '
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As the bracket in the second term is dlog f/00, this says

10f dlog f Odlog f
/[(f%) +ae( ag )|f =0, /[( 5 )+ ae2<10gf)}f

E[(aae log L) (90‘92 log L} =0: E[{I'O)}+"0)=0: E[s(0)*+s'(0)] = 0.
So with
1(9) = E{C(0)Y’) = —E["(0)] - 1(6) = E[s*(0)] = —E[s'(0)], (b) [6]

giving the equivalence of the two definitions above. By (a) and (b):
The score function s(#) := ¢'(f) has mean 0 and variance 1(0). [4]
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Q2. Sufficiency. We choose the Bayesian framework, as it is easier (for the
non-Bayesian approach, see lectures, Day 2).

(i) If © = (21, 22), we call xy sufficient for 6 if x5 is uninformative about 6,
i.e. does not affect our views on 6, that is,

(a) f(0]x) = f(O]z1,z2) does not depend on x,, i.e.

f(0,21,22)  f(0,21) :

f(Oz1, x2) = f(Blz1), o flay,z2)  f(x)

f(9,$1,$2) . f(96’17$2)
S0, 1) fl@)
(b) f(xe|z1,0) does not depend on 6.
Either of (a), (b), which are equivalent, can be used as the definition of suf-
ficiency in a Bayesian treatment. [Notice that (a) is essentially a Bayesian
statement: it is meaningless in classical statistics, as there # cannot have a
density.| [6]
The Fisher-Neyman Factorisation Criterion for sufficiency is that the like-
lihood f(x|@) factorises as
(C) f<x|0)7 or f(x17x2|6)7 = g(xh 6)h($1, x2>7
for some functions g, h. The Fisher-Neyman Theorem is that this is neces-

sary and sufficient: x; is sufficient for @ iff the Factorisation Criterion (c)
holds. [6]

Le. f(wa|z1,0) = flaa|z1) :

Proof. (b) = (c):

f(x1,32,0)
f(0)
f(21,0) f(z1,29,0)
f0)  flz1,0)
= f(1|0)f(z2l|z1,0)
= f(@1]0)f(a2]z1)  (by (b)),

f(@]0) = f(z1,2|0) =

giving (c).

(c) = (a): By Bayes’ Theorem, posterior is proportional to prior times like-
lihood. The factor h(xi,z3) in (c) can be absorbed into the constant of
proportionality. Then x5 disappears, so does not appear in the posterior,
giving (). // 8]
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Q3. Normal means N(u,c?), o unknown.

The likelihood ratio test (LRT) for Hy v. Hy, where Hy C Hy, is to let
Ai := supy, L, define the likelihood ratio statistic (LR) as A := Lo/L,, and
reject Hy if X is too small. [2]

Hy: p=po v. Hp: punrestricted.

1 1&
L R - P — 2 2
gy Sy S = /o,
Lo = L exp{—li(m — po)?/0%} = o exp{—1n52/a2}
07 gn(2m)n/2 245 0 o (2m)n/2 2 Y ’
in an obvious notation. The MLEs under H; are ot = X, 62 = S?, as usual
(and as in lectures). Similarly (though more simply), under Hy, we obtain

o =25y So

1 1
e"an e 3n
Ih=—"" 0 Ly=—_
togn 272" ’ Sp(2m)2”
So
A= Ly/L; =5S"/S],
and the LR test is: reject if A is too small. [8]
Now

n

nSg = (Xi—po)® =D [(Xi = X) + (X — po))?

=D (X; = X)* +n(X — p19)* = nS* + n(X — po)?

(as Y(X; — X) =0):

S8 (X — o)

But t := (X — yg)v/n — 1/S has the Student t-distribution t(n — 1) with n
df under Hy, so
Sg/S? =1+4+/(n—1).

The LR test is: reject if

A = (5/S5p)" too small;

S2/S? =1+1t*/(n— 1) too big;

t? too big: [t| too big, which is the Student t-test:

The LR test here is the Student t-test. [10]
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Q4. AR(2).

1 2
Xt = gXt,1 + §Xt72 + €, (€t) WN (1)
Mowing-average representation. Let the MA representation of (X;) be

Xy = Zzoiﬂﬁtq- (2>
Substitute (2) into (1):

o0 1~ 2 o0
Zo Yier; = 520 Vi€ i1+ 520 Vi€ 2 i + €

1 o0 2 o0
= §Z1 Vi€ + 522 Vi—o€i—; + €.

Equate coefficients of ¢,_;:
i =0 gives 1y = 1; i = 1 gives 1y = 510 = 1/3; i > 2 gives

1 2
Y = ng’fl + 5%72-

This is again a difference equation, which we solve as above. The character-
istic polynomial is
5 1 2 2 1

A 3)\ 9—07 or (A 3)()\+3)—O,
with roots A\ = 2/3 and Ay = —1/3. The general solution of the difference
equation is thus ¥; = c] A} + oAb = ¢1(2/3)" + c2(—1/3)". We can find ¢y, ¢y
from the values of v, 11, found above:
1=0givescy +cg=0,0rco=1—¢y.
i=1gives 1.(2/3)+(1—c1)(—1/3) =11 =1/3: 2c1 —(1—¢1) = 1: ¢y = 2/3,
o =1/3. So

22 01 -1 2450~
and
oo 2viv1 1
Xy = ZO [(g) - (?) Jee—i,
giving the MA representation. [14]

The Yule-Walker equations are

p(k) = ¢1p(k = 1) + dap(k — 2).
We solve this difference equation as above, obtaining p(k) = a\¥ + b5, and
find @, b from the first few values, again as above. [3, 3]
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Q5. (i) With time ¢ discrete: if X = (X;) has M := sup, F[|X;|] < oo and
Y = (1)) € by, ie. ||Y]1 = 22 |¥;] < 0o — then

ED 2 |il|Xejl] = 22 W5l B[ X—51] < M[¢ly < o0

(interchanging £ and Y- by Fubini’s theorem), so >, [¢;]|X;—;| < oo a.s.:

> 1 X, is a.s. absolutely convergent, to S say. [4]
Then

| D2 UiXe | S MJ Y byl =0 (n— o0)

7]>n li1>n
(tail of a convergent series), so Y- 1, X;_; converges to S in ¢; also. [4]
(ii) If o € 41, X |Y;| < 00. So ¢; — 0, so is bounded: |¢;| < K say. Then
S li2 < O |yl = K|l < 0o, ie. ¥ € £y, So £y C Ly, [4]

(iii) If C := sup, E[|X}|?] < oo: take n > m > 0; then

Ell Y X iPl= >0 > i ElXe ;X ]

m<|j|<n m<j<n m<k<n

Now |E[X,_jX,—4]| < /E[IXi_j|?]. E[|X,—&[?] < C, by the Cauchy-Schwarz
inequality. So the RHS

<C Y D Wite=0 Y PP =0 (mn— o),
m<j<n m<k<n m<j<n
as ¢ € {1. So by completeness of ¢, >>1;X,_; converges in {5 (that is, in
mean square) — to S’, say. Then by Fatou’s Lemma

EB|S"=> w;Xe il = Elim inf 15" = " X)) < lin%zinfEHS’—Z VX!l =0,
j " "

as Y 1; X;—; converges to S in f5. So S’ = > Ui X ;=S as.: the as., £
and /o limits coincide. // (8]
Note. The a.s. convergence also follows from Kolmogorov’s theorem on
random series: 1; X;_; has variance

var(;Xi-,) = vhver(X,.) < v3sup EIX?) = Cy,
so > var(y;Xe_;) converges as 1) € f5. The same bound also gives (y-

convergence, by dominated convergence.
(Seen — 2011 Mock Exam)



Q6. (i) (Rank-one matrices). If C' is the zero matrix, it has rank 0 — a trivial
case, which we exclude.

If C has rank one, the range of C'is one-dimensional (this is one of several
equivalent definitions of rank). If the domain and range of C' have bases e;, f;,
Ce; is non-zero for some i (or C' would be zero) —~ w.l.o.g., Ce; = 32, c1;f; # 0.
Write b; := c1;: Cey = 32, b;f; # 0. As the range of C' is one-dimensional,
for each i, Ce; is a multiple a;Ce; of Cey: Ce; = 37, a;b;f;. This says that
the linear transformation represented by C' has matrix C' = (¢;;) = (a;b;)
w.r.t. the bases e; and f;.

Conversely, if C' = (a;b;) is not the zero matrix: at least one a;b; # 0;
w.l.o.g., by re-ordering rows and columns, take ay,b; # 0. Then column j is
the multiple b;/b; of column 1, and row ¢ is the multiple a;/a; of row 1. So
C' has column-rank 1 (only 1 linearly independent column), and row-rank 1,
so has rank 1. [10]
(ii) With a the column-vector (a,1,1)T, A = aa”. So A has rank 1, and as
it is 3 x 3, it has one non-zero eigenvalues and two 0 eigenvalues.

Aa =aa’a = (a* + 2)a,

as al’a = a® + 2. This says that A has eigenvalue a? + 2 with eigenvec-

tor a. The other two eigenvalues are 0, with eigenvectors x, y say. The
eigenequation for x = (1, Tq, x3)7 is

ar| + To + T3 :O,
three times (check). Taking x3 = 0, we can take z; = 1, 9 = —a; taking
x1 =0, we can take zo = 1, 3 = 1, giving

x=| —a |, y=1| 1 |. [10]
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