
smfw1 Week 1, 17 & 19.1.2017

I: ESTIMATION OF PARAMETERS

1. Parameters; Likelihood

To do Statistics – to handle the mathematics and data analysis of sit-
uations involving randomness – we need to model the situation. Here we
confine ourselves to models that can be specified by a parameter, θ, which
will be finite-dimensional. Often, θ will be one-dimensional. Usually, the
dimensionality will be quite low (at most 5 or 6, say), unless the parameters
are vectors or scalars (which will be the case with Multivariate Analysis,
Ch. III. When infinitely many dimensions are needed, one speaks instead
of a non-parametric model; see Ch. VI. Sometimes, one has a compound
model, with a parametric part and a non-parametric part; one speaks then
of a semi-parametric model.

Things should be kept as simple as possible (but not simpler!) So we
should always work with as few parameters as possible – or, in the lowest
possible number of dimensions. If we are unsure about what this is, we need
to formulate a question on this, and test it on the data. This is the context
of Hypothesis testing, Ch. II.

We deal with a probability distribution, F , describable by a parameter θ.
Our data consists of a random variable X, or random variables X1, . . . , Xn,
drawn from this distribution. A statistic is just a function of the data –
something we can calculate when we have done our sampling and obtained
our data; an estimator of θ is a statistic used to estimate a parameter θ.
Often our data X1, . . . , Xn will be independent and identically distributed
(iid); we call them independent copies drawn from F , or independent draws
from F . We shall use the same letter F for the probability distribution or
law (a measure), and the corresponding probability distribution function (a
function); F will be a Lebesgue-Stieltjes measure (function) in the language
of Measure Theory (Stochastic Processes, Ch. I – SP I). By the Lebesgue
decomposition theorem,

F = Fac + Fd + Fcs = Fac + Fs,

where Fac is the absolutely continuous component (w.r.t. Lebesgue measure;
write f for its Radon-Nikodym derivative, called the (probability) density
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(function) of F , X), Fd is the discrete component (probability mass mn > 0
at a finite or countable set of points xn), and Fcs is the continuous singular
component. We often combine the last two, into the singular component, Fs.
In this course, without further comment, we shall always be dealing with the
absolutely continuous case, with density f , or with the discrete case, in which
case (partly to simplify notation, partly to emphasise that here the base or
reference measure is counting measure rather than Lebesgue measure) we
write f(xn) for the probability mass mn at the point xn.

The most basic questions to ask about a random variable are ‘how big is
it’ (on average), and this is measured by the mean,

µ or µX := E[X],

and ‘how variable (or how random) is it’, which is measured by the variance

σ2, or σ2
X := E[(X − E[X])2] = E[X2]− [EX]2.

We write
µ2 := E[X2], µn := E[Xn] (n = 1, 2, . . .).

Our first task is usually to estimate the mean, and we like to be ‘right on
average’. We call an estimator S for θ unbiased if

ES = θ;

otherwise it has bias ES−θ. For the mean, we have an obvious estimator, the
sample mean X̄. This is unbiased, and by the Strong Law of Large Numbers
(SLLN – Stochastic Processes), X̄ → µ (n → ∞) a.s.; we say that X̄ is
consistent for µ (we ‘get the right answer in the limit’). For the variance,
matters are somewhat more complicated. The sample variance

S2 :=
1

n

n∑
1

(Xk − X̄)2 = X2 − [X̄]2

is consistent, as by SLLN

S2 → E[X2]− [E X]2 = σ2 (n→∞).

But it is biased, and to obtain the unbiased version we have to divide by
n− 1 instead of n (as many authors do for this reason – always check!) For,

nS2 =
n∑
k=1

(Xk − X̄)2 (X̄ =
1

n

n∑
i=1

Xi)
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=
∑
k

X2
k −

2

n

∑
ik

XkXi + n.
1

n2

∑
ij

XiXj

=
∑
k

X2
k −

1

n

∑
ik

XkXi.

Now if i = k E[XiXk] = E[X2
k ] = µ2, and if i 6= k E[XiXk = E[Xi].E[Xk] =

µ2, by independence. So

nE[S2] = nµ2 −
1

n
[nµ2 + n(n− 1)µ2] = (n− 1)[µ2 − µ2] = (n− 1)σ2 :

E[S2] =
n− 1

n
σ2 : E

[ n

n− 1
S2
]

= σ2 :

E[S2
u] = σ2, S2

u :=
1

n− 1

n∑
1

(Xk − X̄)2.

Here S2
u is called the unbiased (version of the) sample variance.

We recapitulate from Introductory Statistics Ch. II (IS II).
Likelihood.

We write θ for a parameter (scalar or vector), and write such examples
as f(x|θ), which we will call the density (w.r.t. Lebesgue measure in the first
three examples, counting measure in the fourth – see SP I). Here x is the
argument of a function, the density function.

If we have n independent copies sampled from this density, the joint
density is the product of the marginal densities:

f(x1, . . . , xn|θ) = f(x1|θ). . . . .f(xn|θ), (∗)

which we may abbreviate to

f(., . . . , .|θ) = f(.|θ). . . . .f(.|θ),

The Method of Maximum Likelihood (MLE).
Now suppose that the numerical values of the random variables in our

data set are x1, . . . , xn. Fisher’s great idea of 1912 was to put the data xi
where the arguments xi were in (∗). He called this (later, 1921 on) the
likelihood, L – a function of the parameter θ:

L(θ) := f(x1, . . . , xn|θ) = f(x1|θ). . . . .f(xn|θ). (L)
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The data point will tend to be concentrated where the probability is con-
centrated. Fisher advocated choosing as our estimate of the (unknown, but
non-random) parameter θ, the value(s) θ̂ (or θ̂n) for which the likelihood
L(λ) is maximised. This gives the maximum likelihood estimator (MLE); the
method is the Method of Maximum Likelihood. It is intuitive, simple to use
and very powerful – ‘everyone’s favourite method of estimating parameters’.

It is often more convenient to maximise instead the log-likelihood,

` := logL,

(as log is increasing, maximising L and ` are the same).
Examples.
1. Normal, N(µ, σ) (or N(µ, σ2)).

As in IS II, the MLEs are

µ̂ = X̄, σ̂2 = S2(=
1

n

n∑
1

(Xk − X̄)2).

But by above, this is biased: to obtain an unbiased estimator for σ2, we
have to use S2

u and divide by n − 1 instead of n. So desirable properties of
estimators (e.g. being MLE and unbiased, as here) may be incompatible.
Note. If we use X here (in X1, . . . , Xn, X̄ etc.), we are thinking of the Xs
as random variables (”before sampling”). If we use the corresponding lower-
case letters, we are thinking of them as data – the numerical values obtained
(”after sampling”). We shall feel free to use either, depending on convenience
– but the second is customary in Statistics, so we shall use it as our default
option here.

We quote (see e.g. [BF] Th. 2.4) that for N(µ, σ2)
(i) X̄ and S2 are independent;
(ii) X̄ ∼ N(µ, σ2/n);
(iii) nS2/σ2 ∼ χ2(n− 1).
So (by definition of the Student t-distribution)

√
n− 1.

√
n(X̄ − µ)/σ√

nS/σ
=
√
n− 1(X̄ − µ)/S ∼ t(n− 1).

Note that σ (a nuisance parameter if we are interested in the mean) cancels.
As in IS II:

2. Poisson P (λ): λ̄ = x̄.
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3. Exponential E(λ): λ̄ = 1/x̄.
The first example is a two-parameter problem, the next two are one-

parameter problems. But the first example contains two one-parameter sub-
problems:
1a. Normal N(µ, σ2), σ known. The calculation above gives µ̂ = x̄ again.
Note that µ̂ ∼ N(µ, σ2/n) (whether or not σ is known).
1b. Normal N(µ, σ2), µ known. The calculation above gives

σ̂2 =
1

n

n∑
1

(xi − µ)2.

This is now a statistics, as µ is known – call it S2
µ. Then (recall that χ2(r) is

the distribution of the sum of the squares of r copies of standard normals)

nS2
µ/σ

2 ∼ χ2(n).

By contrast, in Ex. 1,
nS2/σ2 ∼ χ2(n− 1)

(see e.g. [BF], Th. 2.4). We shall see other differences in Ch. II on Hypoth-
esis Testing: the tests used vary depending on what is known.

2. The Cramér-Rao Inequality

As above: we like parameter estimates to be unbiased (”get it right on
average”). We also like estimates to be precise (”have values close together” –
as little randomness as possible). We can think of precision as the reciprocal
of the variance, so we like maximum precision, or minimum variance. Thus
an ideal estimator is minimum-variance unbiased (MVU), and we shall study
such estimators below.

But before we do this, it is important to consider the trade-off between
precision and bias. Consider, by analogy, setting the sights for a rifle. Bias
concerns whether the weapon fires, say, too high or to the right, etc. Precision
concerns the grouping of a number of shots. One would prefer a precision
weapon firing a bit high to a blunderbuss, with its shots all over the place
but ‘right on average’. One can formalise this, using the language of Decision
Theory. But as this is a subject in its own right, we shall not do this here
for lack of time.

We now focus on MVU estimators. The remarkable thing is that there
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are theoretical limits to the accuracy they can attain.
As above, we have a joint density f = f(x1, . . . , xn; θ), which we write as

f = f(x; θ). This integrates to 1:
∫
f(x; θ)dx = 1 (where dx is n-dimensional

Lebesgue measure), which we abbreviate to∫
f = 1.

We assume throughout that f(x; θ) is smooth enough for use to differentiate
under the integral sign (w.r.t. dx, understood) w.r.t. θ, twice. Then∫

∂f

∂θ
=

∂

∂θ

∫
f =

∂

∂θ
1 = 0 :

∫ ( 1

f

∂f

∂θ

)
.f = 0 :

∫ ( ∂
∂θ

log f
)
.f = 0.

Now E[g(X)] =
∫
g(x)f(x; θ)dx =

∫
gf , so in probabilistic language this

says

E
[∂ logL

∂θ

]
= 0 : E

[∂`
∂θ

]
= 0 : E[`′(θ)] = 0.

We now introduce the (Fisher) score function

s(θ) := `′(θ) :

E[s(θ)] = 0. (a)

Differentiate under the integral sign wrt θ again:

∂

∂θ

∫ ( 1

f

∂f

∂θ

)
.f = 0,

∫
∂

∂θ

[( 1

f

∂f

∂θ

)
.f
]

= 0 :

∫ [( 1

f

∂f

∂θ

)∂f
∂θ

+ f
∂

∂θ

( 1

f

∂f

∂θ

)]
= 0.

As the bracket in the second term is ∂ log f/∂θ, this says∫ [( 1

f

∂f

∂θ

)2
+

∂

∂θ

(∂ log f

∂θ

)]
f = 0,

∫ [(∂ log f

∂θ

)2
+

∂2

∂θ2
(log f)

]
f = 0,

or as above

E
[( ∂
∂θ

logL
)2

+
∂2

∂θ2
logL

]
= 0 : E[{`′(θ)}2 + `′′(θ)] = 0 :

E[s(θ)2 + s′(θ)] = 0. (b)
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We write

I(θ) := E[{`′(θ)}2] = −E[`′′(θ)] : I(θ) = E[s2(θ)] = −E[s′(θ)], (c)

and call I(θ) the (Fisher) information on θ (in the sample (x1, . . . , xn)). By
(a) and (c):

Proposition. The score function s(θ) := `′(θ) has mean 0 and variance I(θ).

When x1, . . . , xn are independent, the joint density is the product of
the marginal densities; so the log-likelihoods ` add; so the informations
−E[`′′] = −E[s′] (from (c)) add: the information in a sample of size n
is n times the information per reading. Also from (c), s2 ≥ 0, so E[s2] ≥ 0:
information is non-negative. These two properties suggest that the term in-
formation is indeed well chosen.

Theorem (Cramér-Rao Inequality, or Information Inequality, H.
Cramér (1946), C. R. Rao (1945). Let Y = u(X) be any unbiased estimator
of θ. Then the minimum variance bound for var Y is

var Y ≥ 1/I(θ,X) = 1/(nI(θ)),

where I(θ) is the information per reading.

Proof. As Y = u(X) is unbiased,

θ = E[u(X)] =

∫
u(x)f(x; θ)dx =

∫
uf.

∂/∂θ:

1 =
∂

∂θ

∫
uf =

∫
u
( 1

f

∂f

∂θ

)
f =

∫
u(∂ log f/∂θ)f :

1 = E[u∂ logL/∂θ] = E[u`′] = E[us].

By (a), (b) and (c),

var s = var `′ = E[(`′)2] = I(θ; X),= I(θ),

say. The correlation coefficient is

ρ := ρ(u, s) =
cov(u, s)√
var u

√
vars

=
E[us]− E[u]E[s]
√
var u

√
I

=
1

√
var u

√
I
,
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as E[s] = 0, E[us] = 1. But
ρ2 ≤ 1

(correlation bound: Cauchy-Schwarz Inequality). So

var u ≥ 1/I. //

Defn. We call an estimator efficient if it is unbiased and its variance achieves
the CR lower bound, asymptotically efficient if its bias tends to 0 and its vari-
ance achieves the CR bound asymptotically.

An efficient (= minimum-variance unbiased, MVU) estimator is also called
a best estimator.

When dealing with regression (Ch. IV), we shall often meet linear esti-
mators; the above then become BLUEs (best linear unbiased estimators).

3. Large-Sample Properties of MLEs

As the example of the uniform distribution in Introstat shows, some regu-
larity condition is needed in order to get asymptotic normality of MLEs. For
a modern treatment, see e.g. van der Vaart [vdV, §5.3, p.51-60]. We content
ourselves with a classical result (Cramér, 1946, below); it is condition (iii)
there that can be weakened (e.g., to a Lipschitz condition: see [vdV]).

We assume the following regularity conditions:
(i) differentiability under the integral sign twice (as before);
(ii) finite positive Fisher information per reading I(θ);
(iii) In some neighbourhood N of the true parameter value θ0,∣∣∣ ∂3

∂θ3
log f(x; θ)

∣∣∣ ≤ H(x), where supθ∈NEθH(X) ≤M <∞.

Theorem (Cramér, 1946). Under the above regularity conditions, the MLE
θ̂ of the true parameter value θ0 is
(i) strongly consistent: θ̂ → θ0 as n→∞, a.s.,
(ii) asymptotically efficient: var θ̂ ∼ 1/(nI(θ)), the Cramér-Rao lower bound;
(iii) asymptotically normal:

√
nI(θ0)(θ̂ − θ0)→ Φ = N(0, 1) (n→∞).

Proof. (i) We use Taylor’s theorem to expand the score function s = `′ about
θ = θ0:

s(θ) = s(θ0) + (θ − θ0)s′(θ0) +
1

2
(θ − θ0)2s′′(θ∗),
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for some θ∗ between θ0 and θ. Since `(x1, . . . , xn; θ) =
∑n

1 `(xi; θ), and
similarly for s = `′, this says (on dividing by n)

s(x; θ)/n =
1

n

n∑
1

s(xi; θ) =
1

n

n∑
1

s(xi; θ0) + (θ − θ0).
1

n

n∑
1

s′(xi; θ0)

+
1

2
(θ − θ0)2.

1

n

n∑
1

s′′(xi; θ
∗). (∗)

The first term on the RHS is an average of iid rvs with mean Es(θ0) = 0, by
(a) of I.2. So by SLLN, this → 0 a.s. as n → ∞. Similarly, by SLLN the
second term on RHS converges a.s. to

(θ − θ0)s′(θ0) = −I(θ0)(θ − θ0).

The third term on RHS of (∗) is bounded by 1
2
M(θ− θ0)2, by our regularity

assumption (iii) (as s′′ = `′′′). For θ close enough to θ0, this is negligible wrt
the second term. So RHS ∼ second term:

RHS ∼ −I(θ0).(θ − θ0).

Since I(θ0) ∈ (0,∞), by (ii), the sign of the RHS is thus opposite to that of
θ − θ0, for large enough n and θ close enough to θ0. For such n and θ, RHS
changes sign in every neighbourhood of θ0 (just take θ through θ0). But LHS
= RHS, so the LHS too changes sign in every neighbourhood of θ0, for large
enough n. This says that there is a root θ̂ = θ̂n of the likelihood equation

s(x; θ) = 0 (LE)

in every neighbourhood of θ0.
Since this neighbourhood can be arbitrarily small, we must have

θ̂ = θ̂n → θ0 (n→∞) a.s.,

proving the strong consistency of the MLE θ̂ and (i).
Now put θ = θ̂ in (∗). The LHS is 0, by definition of MLE (recall

s = `′ = (logL)′). The third term on RHS is negligible wrt the second term,
because of the extra factor θ − θ0 → 0, by (i). So we can neglect this term,
leaving

0 ∼ 1

n

n∑
1

s(xi; θ0) + (θ̂ − θ0).
1

n

n∑
1

s′(xi; θ0).
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Rearranging,√
nI(θ0)(θ̂ − θ0) ∼

[
∑n

1 s(xi; θ0)]/
√
nI(θ0)

[
∑n

1 −s′(xi; θ0)]/(nI(θ0))
(n→∞). (∗∗)

By CLT, the numerator on RHS → Φ = N(0, 1), as s(xi; θ0) are iid with
mean 0 and variance I(θ0). By LLN, the denominator on RHS → 1 a.s., as
−s′(xi; θ0) are iid with mean I(θ0) (by I.2, Prop.). Combining, RHS → Φ.
So LHS → Φ:√

nI(θ0)(θ̂ − θ0)→ Φ = N(0, 1) : var (θ̂ − θ0) = var θ̂ ∼ 1/(nI(θ0)),

the Cramér-Rao bound, so θ̂ is asymptotically efficient, proving (ii), and θ̂ is
asymptotically normal, proving (iii). //

As mentioned above, the regularity conditions above can be weakened, at
the cost of a harder proof, but some regularity conditions are needed. The
phrase ”under suitable regularity conditions” recurs with remorseless regu-
larity in textbook treatments of large-sample properties of MLEs.
Example. Uniform U(a, b), or U(θ − 1

2
, θ + 1

2
). See IS II, where we showed

that here the MLEs converge at a different rate (n, not
√
n) and to a different

limit (exponential, or symmetric exponential, not normal).

Vector Parameters.
If θ = (θ1, . . . , θr) is an r-dimensional (vector) parameter, one can proceed

as above. We now obtain the (Fisher) information matrix

I(θ) = (Iij(θ))
r
i,j=1,

where we use suffix notation for partial differentiation (gi := ∂g/∂θi, etc.)
and

Iij(θ) := E[`i(θ)`j(θ)] = E[−`ij(θ)].
Under regularity conditions as above (we assume the information matrix is
positive definite, so we can invert it), we again obtain consistency, asymptotic
efficiency and asymptotic normality:

θ̂ ∼ Nr(θ, n
−1I−1(θ)).

Stochastic process versions.
The true context for results such as the above is not random variables
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as above, but stochastic processes. Infinite-dimensional versions are possible
(and needed), in which conclusions are drawn, not for one time-point at a
time, but for infinitely many together – say, all t ∈ [0, 1], or all t ≥ 0. We
shall develop these ideas later (Day 3). Meanwhile, we mention our main
source for such things,
[vdVW] Aad van der VAART and Jon A. WELLNER, Weak convergence
and empirical processes, with applications to statistics, Springer, 1996.
In particular, [vdVW] contains detailed accounts of M -estimators (3.2) (‘M
for maximum’ – generalising MLEs), and Z-estimators (3.3) (‘Z for zero’:
the MLE is a zero of the likelihood equation `′ = 0).

Iterative solution of the Likelihood Equation
It may not be possible to solve the Likelihood Equation `′ = 0 (LE) in

closed form. In such cases, we have to proceed as elsewhere in Mathematics
– in particular, in Numerical Analysis – and proceed iteratively.

To assess the problem, begin by drawing a rough graph of `. By looking for
sign changes, and using trial values, it is usually possible (without excessive
effort) to find a rough approximation to the desired root (there may – will in
general – be multiple roots, but usually the root we need will be clear enough
from context). Call this trial value t. Then (with s = `′)

0 = s(θ̂) = s(t) + ((θ̂ − t)s′(θ∗),

with θ∗ between t and θ̂. Solving,

θ̂ = t− s(t)/s′(θ∗). (∗)

We now have a choice about how to proceed. We know that θ̂ is (strongly)
consistent, θ̂ → θ0, so θ̂ ∼ θ0, so with a good enough starting value t, also
t ∼ θ̂(∼ θ0) and θ∗ ∼ θ̂(∼ θ0).
Newton-Raphson iteration.

This is also known as the tangent approximation. It relies on replacing a
function by its tangent near a point. If xn is near a root of

f(x) = 0,

then a better approximation is

xn+1 := xn − f(xn)/f ′(xn).
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So starting from the approximation t, replacing s′(θ∗) in (∗) by s′(t) gives a
better approximation; this is the Newton-Raphson method.

Fisher’s method of scoring.
Here we replace s′(θ∗) by E[s′(t)] = −I(t) (we know θ∗ ∼ t ∼ θ0 by

above). Then our next (better) approximation is

θ̂ ∼ t− s(t)/E[s′(t)] = t+ s(t)/I(t).

This is Fisher’s method of scoring.
As always with iterations: to implement this numerically, one needs a

”do-loop” (while .... do ...., else stop).
Exercise. Implement this in C++ (the ”official programming language” for
this course), for the Cauchy location family (Problems 3 Q3, SMF1415).
First, choose a µ (arbitrarily – or, by sampling from a chosen distribution).
Then, sample from the Cauchy distribution with this µ. Then, perform the
above iterations (by either, or better still both, of the Newton-Raphson and
Fisher methods), to estimate this µ from the data.

Reparametrisation and the Delta Method.
Suppose we are using parameter θ, but wish to change to some alternative

parametrisation, g(θ), where g is continuously differentiable. A CLT for θ
such as √

n(Tn − θ)→ N(0, σ(θ)2)

(as holds above, with Tn the MLE θ̂ based on a sample of size n and σ2(θ) =
1/I(θ)) transforms into a CLT for g(θ):

√
n(g(Tn)− g(θ))→ N(0, [g′(θ)σ(θ)]2).

For,
g(Tn)− g(θ) = (Tn − θ)(g′(θ) + εn),

with εn a (random) error term. This can be shown to be negligible for large
n (e.g. by Slutsky’s theorem [PfS], or Skorokhod embedding), so

g(Tn)− g(θ) ∼ (Tn − θ)g′(θ).
Since var(cX) = c2 var X, the result follows.

This is called the delta method, and is often useful. It can be extended
from random variables to stochastic processes (i.e., from one or finitely many
to infinitely many dimensions), and we shall meet it again later.
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