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4. Sufficiency and Minimal Sufficiency

Recall (IS II) the idea of sufficiency as data reduction, and minimal suffi-
ciency as data reduction carried as far as possible without loss of information.
We now formalise this.

Definition (Fisher, 1922). To estimate a parameter θ from data x, a statistic
T = T (x) is sufficient for θ if the conditional distribution of x given T = T (x)
does not depend on θ.

Interpretation. Always use what you know. We know T : is this enough? The
conditional distribution of x given T represents the information remaining in
the data x over and above what is in the statistic T . If this does not involve
θ, the data cannot have anything left in it to tell us about θ beyond what is
already in T .

The usual – because the easiest – way to tell when one has a sufficient
statistics is the result below. The sufficiency part is due to Fisher in 1922,
the necessity part to J. NEYMAN (1894-1981) in 1925.

Theorem (Factorisation Criterion; Fisher-Neyman Theorem. T is
sufficient for θ if the likelihood factorises:

f(x; θ) = g(T (x); θ)h(x),

where g involves the data only through T and h does not involve the param-
eter θ.

Proof. We give the discrete case; the density case is similar.
Necessity. If such a factorisation exists,

Pθ(X = x) = g(T (x), θ)h(x),

then given t0,

P (T = t0) =
∑

x:T (x)=t0

Pθ(X = x) =
∑

x:T (x)=t0

g(T (x), θ)h(x) = g(t0, θ)
∑

x:T (x)=t0

h(x).
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So Pθ(X = x|T = t0) = Pθ(X = x & T = T (X) = t0)/Pθ(T = t0) is 0 unless
T (x) = t0, in which case it is

Pθ(X = x)/Pθ(T = t0) =
g(t0; θ)h(x)

g(t0; θ)
∑

T (x)=t0
h(x)

=
h(x)∑

T (x)=t0
h(x)

.

This is independent of θ, so T is sufficient.
Sufficiency. If T is sufficient, the conditional distribution of X given T is
independent of θ:

Pθ(X = x|T = t0) = c(x, t0), say. (i)

The LHS is P (X = x & T (X) = t0)/P (T = t0). Now the numerator is 0
unless t0 = T (X). Defining c(x, t0) to be 0 unless t0 = T (x), we have (i) in
all cases, and now

c(x, t0) = Pθ(X = x)/P (T (X) = t0),

as ”& T (X) = t0 = T (x)” is redundant. So now

Pθ(X = x) = Pθ(T (X) = t0)c(x, t0),

a factorisation of the required type. //

Cor. If U = a(T ) with a injective (one-to-one), T sufficient implies U suffi-
cient.

Proof. T = a−1(U) as a is one-to-one, so

f(x; θ) = g(a−1(U); θ)h(x) = G(U(x); θ)h(x),

say, a factorisation of Fisher-Neyman type, so U is sufficient. //

So if, e.g. T is sufficient for the population variance σ2,
√
T is sufficient

for the standard deviation σ, etc.

Note. From SP, you know Measure Theory, so the above proof may strike
you as crude. It is. For the full story, see e.g.
P. R. HALMOS and L. J. SAVAGE, Application of the Radon-Nikodym the-
orem to the theory of sufficient statistics, Annals Math. Statistics 20 (1949),
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225-241 1.
But textbooks often proceed as above (to avoid encumbering new statistical
ideas with measure-theoretic technicalities), including the classic book by
Rao [R, 2d.3].

Example: Normal families N(µ, σ2).
(i) The joint likelihood factorises into the product of the marginal likelihoods:

f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2

n∑
1

(xi − µ)2/σ2}. (1)

Since x̄ := 1
n

∑n
1 xi,

∑
(xi − x̄) = 0, so∑

(xi−µ)2 =
∑

[(xi−x̄)+(x̄−µ)]2 =
∑

(xi−x̄)2+n(x̄−µ)2 = n(S2+(x̄−µ)2) :

the likelihood is

L = f(x;µ, σ2) =
1

(2π)
1
2
nσn

. exp{−1

2
n(S2 + (x̄− µ)2)/σ2}. (2)

By the Factorisation Criterion, (x̄, S2) is (jointly) sufficient for (µ, σ2). So
for a normal family: only two numbers are needed for the two parameters
µ, σ2, namely x̄, S2 (equivalently,

∑
X,

∑
X2 – note that good programmable

pocket calculators have keys for
∑
X,

∑
X2 for this purpose!)

(ii) Now suppose σ is known (so counts as a constant, not a parameter).
Then (2) says that x̄ is now sufficient for µ.
(iii) But if µ is known, (1) says that now

∑
(xi − µ)2 is sufficient for σ2.

Minimal Sufficiency. Sufficiency enables data reduction – reducing from n
numbers (n is the sample size – the bigger the better) to a much smaller
number (as above). Ideally, we would like to reduce as much as possible,
without loss of information. How do we know when we have done this?

Recall that when applying a function, we lose information in general (we
do not lose information only when the function is injective – one-to-one, when

1P. R. (Paul) Halmos (1916-2006), a versatile mathematician and prolific textbook-
writer;
L. J. (Jimmie) Savage (1917-1971), one of the founding fathers, and greatest champions,
of Bayesian statistics.
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we can go back by applying the inverse function). This leads to the following

Definition. A sufficient statistic T is minimal (sufficient) for θ if T is a
function of any other sufficient statistic T ′.

Minimal sufficient statistics are clearly desirable (‘all the information with
no redundancy’). The following result gives a way of constructing them.

Theorem (Lehmann & Scheffé, 1950). If T is such that the likelihood
ratio f(x; θ)/f(y; θ) is independent of θ iff T (x) = T (y), then T is a minimal
sufficient statistic for θ.

We quote this. To find minimal sufficient statistics, we form the likeli-
hood ratio, and seek to eliminate the parameters. This works very well in
practice, as examples show (see Problems 2). We quote also

Basu’s theorem (Debabrata Basu in 1955).
Any boundedly complete sufficient statistic is independent of any ancil-

lary statistic.

Note. We do not define the term ‘boundedly complete’ here; see e.g. Rao [R,
5a].

This result is often used to show independence of two statistics: show one
boundedly complete sufficient and the other ancillary. Examples (see IS II):
N(µ, σ2); independence of X̄ and S2;
U(θ − 1

2
, θ + 1

2
): independence of mid and ran.

5. Location and scale; Tails

In one dimension, the mean µ gives us a natural measure of location for
a distribution. The variance σ2, or standard deviation (SD) σ, give us a
natural measure of scale.

Note. The variance has much better mathematical properties (e.g., it
adds over independent, or even uncorrelated, summands). But the SD has
the dimensions of the random variable, which is better from a physical point
of view. As moving between them is mathematically trivial, we do so at will,
without further comment.
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Example: Temperature. In the UK, before entry to the EU (or Common
Market as it was then), temperature was measured in degrees Fahrenheit, F
(freezing point of water 32oF , boiling point 212oF (these odd choices are only
of historical interest – but dividing the freezing-boiling range into 180 parts
rather than 100 is better attuned to homo sapiens being warm-blooded, and
most people having trouble with decimals and fractions!) The natural choice
for freezing is 0; 100 parts for the freezing-boiling range is also natural when
using the metric system – whence the Centigrade (= Celsius) scale. Back
then, one used F for ordinary life, C for science, and the conversion rules

C =
5

9
(F − 32), F =

9

5
C + 32

were part of the lives of all schoolchildren (and the mechanism by which
many of them grasped the four operations of arithmetic!)

Pivotal quantities.
A pivotal quantity, or pivot, is one whose distribution is independent of

parameters. Pivots are very useful in forming confidence intervals.

Defn. A location family is one where, for some reference density f , the
density has the form f(x−µ); here µ is a location parameter. A scale family
(usually for x ≥ 0) is of the form f(x/σ); here σ is a scale parameter. A

location-scale family is of the form f(x−µ)
σ

).
Pivots here are

X̄ − µ (location); X̄/σ (scale);
X̄ − µ
σ

(location-scale).

Examples. The normal family N(µ, σ2) is a location-scale family.
The Cauchy location family is

f(x− µ) =
1

π[1 + (x− µ)2]
.

In higher dimensions, the location parameter is the mean µ (now a vector);
the scale parameter is now the covariance matrix

Σ = (σij), σij := cov(Xi, Xj) = E[(Xi − EXi)(Xj − EXj)].
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See III: Multivariate Analysis, below.

6. CAPM.

All of this is highly relevant to Mathematical Finance. Finance was an
art rather than a science before the 1952 PhD thesis of Harry MARKOWITZ
(1927-; Nobel Prize 1990). Markowitz gave us two insights that have become
so much part of the ambient culture that it is difficult to realise that they
have not always been there. These are:
(i). Think of risk and return together, not separately. Now return corre-
sponds to mean (= mean rate of return), risk corresponds to variance –
hence mean-variance analysis (hence also the efficient frontier, etc. – one
seeks to maximise return for a given level of risk, or minimise risk for a given
return rate).
(ii). Diversify (don’t ‘put all your eggs in one basket’). Hold a balanced port-
folio – a range of risky assets, with lots of negative correlation – so that when
things change, one’s losses on some assets will tend to be offset by gains on
others.
Markowitz’s work led on to the Capital Asset Pricing Model (CAPM – ”cap-
emm”) of the 1960s (Jack TREYNOR in 1961/62, William SHARPE (1934-;
Nobel Prize 1990), John LINTNER (1965), Jan MOSSIN (1966)), the first
phase of the development of Mathematical Finance. The second phase was
triggered by the Black-Scholes formula of 1973 and its follow-up by Merton
(Fischer BLACK (1938-95); Myron SCHOLES (1941-; Nobel Prize 1997);
Robert C. MERTON (1944-; Nobel Prize 1997)).

As a result of Markowitz’s work, the vector-matrix parameter (µ,Σ) is
accepted as an essential part of any model in mathematical finance. As a
result of CAPM, regression methods (Ch. IV) are an essential part of any
portfolio management programme. The x-axis is used to represent the return
for the market (or a portfolio) as a whole, the y-axis for the return of the asset.
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II: HYPOTHESIS TESTING

1. Formulation

The essence of the scientific method is to formulate theories, and test
them experimentally. Thus a typical scientific experiment will test some the-
oretical prediction, or hypothesis.

We can never prove that a scientific theory, or hypothesis, is true. To
take an extreme case, look at Newton’s Laws of Motion (Sir Isaac NEW-
TON (1642-1727); Principia, 1687). This was the mathematics that made
possible the Scientific Revolution, and Newton’s Laws were regarded as un-
challengeable for more than two centuries. But in the 20th century, Quantum
Mechanics showed that Newton’s Laws are approximate only – useful in the
macroscopic case, but inadequate at the atomic or subatomic level.

With this in mind, we should treat established theory with respect, and
not replace it lightly (or textbooks would become too ephemeral!), but not
regard it as sacrosanct: scientific theory is provisional, and evolving. This is
part of the great strength of the scientific method.

It is customary, and convenient, to represent the existing theory by a null
hypothesis, H0, and to test it against a candidate new theory, an alternative
hypothesis, H1.

A hypothesis is simple if it completely specifies the parameter(s); e.g.,

H0 : θ = θ0,

composite otherwise, e.g.
H0 : θ > θ0.

As above, there is an asymmetry between H0 and H1: H0 is the ‘default
option’. We will discard H0 in favour of H1 only if the data gives us convinc-
ing evidence to do so.
Legal analogy.

Hypothesis test ↔ Criminal trial

Null hypothesis H0 ↔ accused

H0 accepted till shown untenable ↔ accused innocent until proved guilty
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Accept (= do not reject) H0 ↔ not guilty verdict

Reject H0 (for H1) ↔ guilty verdict

Data ↔ evidence

Statistician ↔ jury

Significance level α ↔ probability of convicting an innocent person.

Significance level.
The above introduces this important term. Statistical data (like legal

evidence) is random (if we re-sampled, we would get different data!) So we
can never conclude with certainty anything from data – including that H0

is false. But we cannot go from this to saying that we can never reject H0

– or scientific progress would halt, being frozen at the current level. We
strike a sensible balance by choosing some small probability, α, of rejecting
a valid null hypothesis, and working with that. We call α the significance
level. Common choices are α = 0.05, or 5%, for ordinary work, and α = 0.01,
or 1%, for accurate work. But note that the choice of α is down to you,
the statistician, so is subjective. We like to think of Science as an objective
activity! So the whole framework of Hypothesis Testing is open to question –
indeed, it is explicitly rejected by Bayesian statisticians (see Ch. VII below).
(But then, the concept of a criminal trial is explicitly rejected in some forms
of political thinking, such as Anarchism.)

There are two types of error in Hypothesis Testing, called Type I error
– false rejection (rejecting H0 wrongly, probability α – cf. convicting an
innocent person), and Type II error – false acceptance (accepting H0 when
it is false, probability β, say – cf. acquitting a guilty person). The usual
procedure is to fix α, and then try to minimise β for this α.

Usually, we decide on a suitable test statistic, T = T (X), and reject H0

if the data X falls in the critical region (or rejection region), R say, where T
falls in some set S. Then abbreviating Pθi to Pi:

α = P0(X ∈ R), β = P1(X /∈ R).

We often look at
1− β = P1(X ∈ R),
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the probability that the test correctly picks up that H0 is false. We can think
of this as the sensitivity of the test; the technical term used is the power of
the test. This depends on θ (grossly wrong hypotheses are easier to reject
than marginally wrong ones!);

θ 7→ 1− β(θ)

is called the power function of the test.
Usually, we fix the significance level α and the sample size n, and then

seek to choose the rejection region R so as to maximise the power 1 − β
[minimise the prob. β of Type II error, false acceptance].

The Likelihood Principle (LP) says that all that matters is the likelihood
L, which is

L0 := L(X; θ0) if H0 is true;
L1 := L(X; θ1) if H1 is true.

The idea of maximum likelihood estimation is that the data supports θ if
L(X; θ) is large. This suggests that a good test statistic for H0 v.H1 would
be the likelihood ratio (LR)

λ := L0/L1 = L(X; θ0)/L(X; θ1),

rejecting H0 for H1 if λ is too small – that is, using the critical region

R := {X : λ(X) ≤ c},

where c is chosen so that
α = P0(X ∈ R).

In the density case, such a region does exist. In the discrete case, it may
not: the probability may ‘jump over’ the level α if one more point is in-
cluded. One can allow for this by randomisation (including the ‘extra point’
with some probability so as to get α right) but we ignore this, and deal with
the density case – the important case in practice.

2. The Neyman-Pearson Lemma
The simple suggestion above is in fact best possible. This is due to J.

NEYMAN (1894-1981) and E. S. PEARSON (1895-1980) in 1933.

Theorem (Neyman-Pearson Lemma). To test a simple null hypothe-
sis H0 : θ = θ0 against a simple alternative hypothesis H1 : θ = θ1 at
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significance level α, a critical region of the form

R := {X : λ ≤ c} = {X : L(X; θ0)/L(X; θ1) ≤ c}, α = P0(λ ≤ c)

is best possible (most powerful): the β = β(R) for this R is as small as
possible for given α and n.

Proof. If S is any other critical region with the same significance level (or
‘size’) α, we need to show β(S) ≥ β(R), i.e.∫

Sc

f(x; θ1)dx ≥
∫
Rc

f(x; θ1)dx :

∫
Sc

f(θ1) ≥
∫
Rc

f(θ1),

or as densities integrate to 1,∫
S

f(θ1) ≤
∫
R

f(θ1). (∗)

But∫
R

f(θ1)−
∫
S

f(θ1) =

∫
R∩S

f(θ1) +

∫
R\S

f(θ1)−
∫
R∩S

f(θ1)−
∫
S\R

f(θ1)

=

∫
R\S

f(θ1)−
∫
S\R

f(θ1).

Now
λ = L0/L1 ≤ c (X ∈ R), > c (X /∈ R),

or reverting from ”L” to ”f” notation,

f(θ1) ≥ c−1f(θ0) in R, < c−1f(θ0) in Rc.

As R \ S ⊂ R, this gives∫
R\S

f(θ1) ≥ c−1
∫
R\S

f(θ0).

Similarly,∫
S\R

f(θ1) ≤ c−1
∫
S\R

f(θ0), −
∫
S\R

f(θ1) ≥ −c−1
∫
S\R

f(θ0).
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Add:∫
R

f(θ1)−
∫
S

f(θ1) =

∫
R\S

f(θ1)−
∫
S\R

f(θ1) ≥ c−1
[∫

R\S
f(θ0)−

∫
S\R

f(θ0)
]
.

(a)
But both R and S have size (θ0-probability) α:

α =

∫
R

f(θ0) =

∫
R∩S

f(θ0) +

∫
R\S

f(θ0),

α =

∫
S

f(θ0) =

∫
R∩S

f(θ0) +

∫
S\R

f(θ0).

Subtract: ∫
R\S

f(θ0) =

∫
S\R

f(θ0).

This says that the RHS of (a) is 0. Now (a) gives (∗). //

Note. The Neyman-Pearson Lemma (NP) is fine as far as it goes – simple v.
simple. But most realistic hypothesis testing situations are more complicated.
Fortunately, NP extends to some important cases of simple v. composite; see
below. We turn to composite v. composite later, using likelihood ratio tests
(LR).
Sufficiency and the Fisher-Neyman theorem. If T is sufficient for θ,

L(X; θ) = g(T (X; θ))h(X),

by Fisher-Neyman. Dividing,

λ := L(θ0)/L(θ1) = g(T (X; θ0))/g(T (X; θ1))

is a function of T only. So if we have a sufficient statistic T , we lose nothing
by restricting to test statistics which are functions of T .

Example.
1. Normal means, N(µ, σ2), σ known.

To test H0 : µ = µ0 v. H1 : µ = µ1, where µ1 < µ0. It turns out
that the NP critical region is of the form ‘reject if X̄ is too small’. (This is
intuitive, as µ1 < µ0.) How small is too small? Because the significance level
α involves probabilities under H0, the critical region is the same for all µ1,
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provided only that µ1 < µ0 (if instead µ1 > µ0, the critical region is ‘reject if
X̄ is too big’). That is, the NP test is most powerful, uniformly in µ1 for all
µ1 < µ0. We call the critical region uniformly most powerful (UMP) for the
simple null hypothesis H0: µ = µ0 v. the composite alternative hypothesis
H1 : µ < µ0. Similarly for H1 : µ > µ0.

3. Likelihood-Ratio Tests
We turn now to the general case: composite H0 v. composite H1. We may

not be able to find UMP (best) tests. Instead, we seek a general procedure
for finding good tests.

Let θ be a parameter, H0 be a null hypothesis – a set of parameter values
T0, such that H0 is true iff θ ∈ T0, and similarly for H1, T1. It is technically
more convenient to take H1 more general than H0, and we can do this by
replacing H1 by ”H1 or H0”. Then T0 ⊂ T1.

With L the likelihood, we write

L0 := sup
θ∈T0

L(θ), L1 := sup
θ∈T1

L(θ).

As with MLE: the size of L1 is a measure of how well the data supports H1.
So to test H0 v. H1, we use test statistic the likelihood ratio (LR) statistic,

λ := L0/L1,

and critical region: reject H0 if λ is too small.
Since T0 ⊂ T1, L0 ≤ L1, so

0 ≤ λ ≤ 1.

In standard examples, we may be able to find the distribution of λ. But
in general this is hard to find, and we have to rely instead on large-sample
asymptotics.

Theorem (S. S. WILKS, 1938). If θ is a one-dimensional parameter,
and λ is the likelihood-ratio statistic for testing H0 : θ = θ0 v. H1 : θ
unrestricted, then under the usual regularity conditions for MLEs (I.3),

−2 log λ→ χ2(1) (n→∞).

Proof. λ = L0/L1, where L0 = L(X; θ0), L1 = L(X; θ̂), with θ̂ the MLE
(I.1). So

log λ = `(θ0)− `(θ̂) = `0 − `1,
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say. But

`(θ0) = `(θ̂) + (θ0 − θ̂)`′(θ̂) +
1

2
(θ0 − θ̂)`′′(θ∗),

with θ∗ between θ0 and θ̂, by Taylor’s Theorem. As θ̂ is the MLE, `′(θ̂) = 0.
So

log λ = `0 − `1 =
1

2
(θ0 − θ̂)2`′′(θ∗), −2 log λ = (θ0 − θ̂)2[−`′′(θ∗)].

By consistency of MLEs (I.3), θ̂ → θ0 a.s. as n→∞. So also θ∗ → θ0. So

−`′′(θ∗) = −`′′(X; θ∗) = n.
1

n

n∑
1

[−`′′(Xi; θ
∗)]

∼ nE[−`′′(Xi; θ
∗)] (LLN)

= nI(θ∗) (definition of information per reading)

∼ nI(θ0) (θ∗ → θ0).

By I.3,

(θ̂ − θ0)
√
nI(θ0)→ Φ, (θ̂ − θ0)2.nI(θ0)→ Φ2 = χ2(1),

using Φ2 as shorthand for ‘the distribution of the square of a standard normal
random variable’. So

−2 log λ→ χ2(1). //

Higher Dimensions. If θ = (θr, θs) is a vector parameter, with
θr an r-dimensional parameter of interest,
θs an s-dimensional nuisance parameter,

to test H0 : θr = θr,0 v. H1 : θr unrestricted. Similar use of the large-sample
theory of MLEs for vector parameters (which involves Fisher’s information
matrix) gives

Theorem (Wilks, 1938). Under the usual regularity conditions,

−2 log λ→ χ2(r) (n→∞).

Note that the dimensionality s of the nuisance parameter plays no role:
what counts is r, the dimension of the parameter of interest (i.e., the differ-
ence in dimension between H1 and H0). (We think here of a fully specified
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parameter, as in H0, as a point – of dimension 0, and of H1 of dimension
r, like θr. There need not be any vector-space structure here. Recall that
degrees of freedom (df) correspond to effective sample size, and that for every
parameter we estimate we ‘use up’ one df, so reducing the effective sample
size by the number of parameters we estimate, so reducing also the available
information. For background, see e.g. [BF], Notes 3.8, 3.9.)

Example 1: Normal means N(µ, σ2), σ unknown.
Here µ is the parameter of interest, σ is a nuisance parameter – a pa-

rameter that appears in the model, but not in the hypothesis we wish to
test.

H0 : µ = µ0 v. H1 : µ unrestricted.

L =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ)2/σ2},

L0 =
1

σn(2π)n/2
. exp{−1

2

n∑
1

(xi − µ0)
2/σ2} =

1

σn(2π)n/2
. exp{−1

2
nS2

0/σ
2},

in an obvious notation. The MLEs under H1 are µ̂ = X̄, σ̂2 = S2, as before,
and under H0, we obtain as before σ = S0. So

L1 =
e−

1
2
n

Sn(2π)
1
2
n

; L0 =
e−

1
2
n

Sn0 (2π)
1
2
n
.

So
λ := L0/L1 = Sn/Sn0 .

Now

nS2
0 =

n∑
1

(Xi − µ0)
2 =

∑
[(Xi − X̄) + (X̄ − µ0)]

2

=
∑

(Xi − X̄)2 + n(X̄ − µ0)
2 = nS2 + n(X̄ − µ0)

2

(as
∑

(Xi − X̄) = 0):
S2
0

S2
= 1 +

(X̄ − µ0)
2

S2
.

But t := (X̄ − µ0)
√
n− 1/S has the Student t-distribution t(n − 1) with n

df under H0, so
S2
0/S

2 = 1 + t2/(n− 1).
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The LR test is: reject if
λ+ (S/S0)

n too small;
S2
0/S

2 = 1 + t2/(n− 1) too big;
t2 too big: |t| too big, which is the Student t-test:

The LR test here is the Student t-test.

Example 2: Normal variances N(µ, σ2), µ unknown.
Here µ is a nuisance parameter. Test

H0 : σ = σ0 v. H1 : σ > σ0.

Under H0, ` = const− n log σ0 − 1
2

∑
(Xi − µ)2/σ2

0.
∂`/∂µ = 0:

∑n
1 (Xi − µ) = 0:

µ̂ =
1

n

n∑
1

Xi = X̄.

So

L0 =
1

σn0 (2π)n/2
. exp{−1

2

n∑
1

(xi − µ̂)2/σ2
0} =

1

σn0 (2π)n/2
. exp{−1

2
nS2/σ2

0}.

Under H1, ` = const−n log σ− 1
2

∑
(Xi−µ)2/σ2. As above, the maximising

value for µ is X̄, and as
∑n

1 (Xi − X̄)2 = nS2,

` = const− n log σ − 1

2

∑
(Xi − µ)2/σ2 = const− n log σ − 1

2
nS2/σ2.

∂/∂σ = 0: −n/σ + nS2/σ3 = 0: σ2 = S2.
There are two cases: I. σ0 < S. II. σ0 ≥ S.
In Case I, S belongs to the region σ > σ0 defining H1, so the maximum

over H1 is attained at S, giving as before

L1 =
e−

1
2
n

Sn(2π)
1
2
n
. So λ =

L0

L1

=
Sn

Sn0
exp

{
−1

2
n
[S2

σ2
0

− 1
]}
. (Case I).

In Case II, the maximum of L is attained at S (L increases up to S, then
decreases), so its restricted maximum in the range σ ≥ σ0 ≥ S is attained at
σ0, the nearest point to the overall maximum S. Then

L1 =
1

σn0 (2π)n/2
. exp{−1

2

n∑
1

(xi − µ̂)2/σ2
0} = L0 : λ = L0/L1 = 1

(Case II).
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Comparing, λ is a function of T := S/σ0:

λ = 1 if T ≤ 1 (Case II), T n exp{−1

2
n[T 2 − 1]} if T ≥ 1 (Case I).

Now f(x) := xn exp{−1
2
n[x2 − 1]} takes its maximum on (0,∞) at x = 1,

where it takes the value 1 (check by calculus). So (check by graphing λ
against T !) the LR test is:

reject if λ too small, i.e. T too big, i.e. S too big – as expected.
Under H0, nS

2/σ2
0 is χ2(n− 1)... If cα is the upper α-point of χ2(n− 1),

reject if nS2/σ2
0 ≥ cα, i.e., reject if S ≥ σ2

0cα/n.
Similarly ifH1 is σ < σ) and dα is the lower α-point: reject if S2 ≤ σ2

0dα/n.

4. Testing Linear Hypotheses
We follow [BF] Ch. 6. In the regression context, of estimating parameters

β in a model y = Aβ + ε (A the design matrix, n × p, known, β the p-
vector of parameters, ε the n-vector of errors, iid N(0, σ2)), the MLE for β is
b̂ = (ATA)−1Ay = C−1Ay. The total sum of squares is SS = SSR + SSE,
the sum of the sums of squares for regression and for error. We choose β so as
to minimise SS, equivalently, SSR (as SSE is a statistic – can be calculated
from the data – and does not involve the unknown parameters). If we have
to test a linear hypothesis

Bβ = c

(B is a k×p matrix, with k ≤ p, of full rank, and c is a k-vector of constants),

minimise SSR = (β̂ − β)TC(b̂− β) under Bβ = c.

This is a constrained minimisation problem, and can be solved (as usual) by
Lagrange multipliers. It turns out that the minimising value is

β† = β̂ − C−1BT (BC−1BT )−1(Bb̂− c),

and with
SSH := (β̂ − β†)TC(β̂ − β†)

the sum of squares for the hypothesis, SSE/σ2 ∼ χ2(n− p) and SSH/σ2 ∼
χ2(k) are independent. We test for H using the F -statistic

F :=
SSH/k

SSE/(n− p)
∼ F (k, n− p),

rejectingH if F is too big (Kolodzieczyk’s Theorem, 1935) [Polish l: ‘Kowodjaychick’].
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