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III: MULTIVARIATE ANALYSIS

1. Preliminaries: Matrix Theory.
Modern Algebra splits into two main parts: Groups, Rings and Fields on

the one hand, and Linear Algebra on the other. Linear Algebra deals with lin-
ear transformations between vector spaces. We confine attention here to the
finite-dimensional case; the infinite-dimensional case needs Functional Anal-
ysis and is harder. Broadly, Parametric Statistics can be handled in finitely
many dimensions, Non-Parametric Statistics (Ch. VI) needs infinitely many.

Determinants can be traced back to Leibniz (1684, unpublished in his
lifetime), Cramer (below) and others; the term first appears in Gauss’ the-
sis Disquisitiones arithmeticae in 1801. Although matrices logically precede
determinants, they were developed after them. The term is due to J. J.
SYLVESTER (1814-1897) in 1850; the theory largely stems from a paper
of Arthur CAYLEY (1821-1895) in 1858 (this contains the Cayley-Hamilton
Theorem, following work by Hamilton in 1853).

Given a finite-dimensional vector space V , we can always choose a basis
(a maximal set of linearly independent vectors). All such bases contain the
same number of vectors; if this is n, the vector space has dimension n.

Given two finite-dimensional vector spaces and a linear transformation α
between the two, choice of bases (e1, . . . , em) and (f1, . . . , fn) determines a
matrix A = (aij) by

eiα =
n∑
j=1

aijfj (i = 1, . . . ,m).

We write

A =

 a11 . . . a1n
...

...
am1 . . . amn

 ,

or A = (aij) more briefly. The aij are called the elements of the matrix; we
write A (m× n) for A (m rows, n columns).

Matrices may be subjected to various operations:
1. Matrix addition. If A = (aij), B = (bij) have the same size, then

A±B := (aij ± bij)
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(this represents α± β if α, β are the underlying linear transformations).
2. Scalar multiplication. If A = (aij) and c is a scalar (real, unless we specify
complex), then the matrix

cA := (caij)

represents cα.
3. Matrix multiplication. If A is m× n, B is n× p, then C := AB is m× p,
where C = (cij) and

cij :=
n∑
k=1

aikbkj

(this represents the product, or composition, αβ or x 7→ xαβ).
Note. Matrix multiplication is non-commutative! – AB 6= BA in general,
even when both are defined (which can only happen for A, B square of the
same size).
Partitioning.

We may partition a matrix A in various ways. for instance, A as above
partitions as

A =

(
A11 A12

A21 A22

)
,

where A11 is r×s, A12 is r×(n−s), A21 is (m−r)×s, A22 is (m−r)×(n−s),
etc. In the same way, A may be partitioned as
(i) a column of its rows; (ii) a row of its columns.
Rank.

The maximal number of linearly independent rows of A is always the
same as the maximal number of independent columns. This number, r, is
called the rank of A. When r = min(m,n) is as big as it could be, the matrix
A has full rank.
Inverses.

When a square matrix A (n×n) has full rank n, the linear transformation
α : V → V that it represents is invertible, and so has an inverse map α−1 :
V → V such that αα−1 = α−1α = i, the identity map, and α−1 is also a
linear transformation. The matrix representing α−1 is called A−1, the inverse
matrix of A:

AA−1 = A−1A = I,

the identity matrix of size n: I = (δij) (δij = 1 if i = j, 0 otherwise – the
Kronecker delta).
Transpose.
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If A = (aij), the transpose is A′, or AT := (aji).
Note that, when all the matrices are defined,

(AB)−1 = B−1A−1

(as this gives (AB)(AB)−1 = ABB−1A−1 = AA−1 = I, and similarly
(AB)−1(AB) = I, as required), and

(AB)T = BTAT

(the (i, j) element is
∑

k(B
T )ik(A

T )kj =
∑

k bkiajk =
∑

k ajkbki = (AB)ji).
Determinants.

There are n! permutations σ of the set

Nn := {1, 2, . . . , n}

– bijections σ : Nn → Nn. Each permutation may be decomposed into a
product of transpositions (interchanges of two elements), and the parity of
the number of transpositions in any such decomposition is always the same.
Call σ odd or even according as this number is odd or even. Write

sgn σ := 1 if σ is even, −1 if σ is odd

for the sign or signum of σ. For A a square matrix of size n, the function

det A, or |A|, :=
∑
σ

( sgn σ)a1,σ(1)a2,σ(2) . . . an,σ(n),

where the summation extends over all n! permutations, is called the deter-
minant of A, det A or |A|.
Properties.
1. |AT | = |A|.
Proof. If σ−1 is the inverse permutation to σ, σ and σ−1 have the same parity,
so the sums for their determinants have the same terms, in a different order.
2. If two rows (or columns) of A coincide, |A| = 0.
Proof. Interchanging two rows changes the sign of |A| (extra transposition,
which changes the parity), but leaves A and so |A| unaltered (as the two
rows coincide). So |A| = −|A|, giving |A| = 0.
3. |A| depends linearly on each row (or column) (det is a multilinear func-
tion, and this area is called Multilinear Algebra).
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4. If A is n× n, |A| = 0 iff A has rank r < n. For then, some row is a linear
combination of others. Expanding by this row gives sum of determinants
with two rows identical, giving 0.

5. Multiplication Theorem for Determinants (Proof: see SMF1415).
If A, B are n× n (so AB, and BA, are defined),

|AB| = |A|.|B|.

6. Inverses again.
If A is n × n, the (i, j) minor is the determinant of the (n − 1) × (n −

1) submatrix obtained by deleting the ith row and jth column. The (i, j)
cofactor, or signed minor Aij, is the (i, j) minor times (−)i+j (the signs follow
a chessboard or chequerboard pattern, with + in the top left-hand corner),

The matrix B = (bij), where

bij := Aji/|A|,

is the inverse matrix A−1 of A, defined iff |A| 6= 0 (A is called singular
if |A| = 0, non-singular otherwise (thus a square matrix has a non-zero
determinant iff it is non-singular), and

AA−1 = A−1A = I :

Theorem (Matrix inverse).

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, C := AB = (cij),

cij =
∑
k

aikbkj =
∑
k

aik.Ajk/|A|.

If i = j, the RHS is 1 (expansion of |A| by its ith row). If not, the RHS
is 0 (expansion of the determinant of a matrix with two identical rows). So
cij = δij, so C = AB = I. Similarly, BA = I. //

Solution of linear equations.
If A is n× n, the linear equations

Ax = b
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possess a unique solution x iff A is non-singular (A−1 exists), and then

x = A−1b.

If A is singular (A has rank r < n), then either there is no solution (the equa-
tions are inconsistent), or there are infinitely many solutions (some equations
are redundant, and one can give some of the elements xi arbitrary values and
solve for the rest – consistency but non-uniqueness). What decides between
these two cases is the rank of the augmented matrix (A, b) obtained by ad-
joining the vector b as a final column. If rank(A, b) = rank(A), Ax = b is
consistent; if rank(A, b) > rank(A), Ax = b is inconsistent.
Orthogonal Matrices.

A square matrix A is orthogonal if

AT = A−1,

or equivalently, if
ATA = AAT = I.

Then |ATA| = |AT ||A| = |A|.|A| = |I| = 1, |A|2 = 1, |A| = ±1 (we take the
+ sign).

If A = (a1, . . . , an) (row of column vectors, so AT is the column of row-
vectors aTi ) is orthogonal, ATA = I, i.e. aT1

...
aTn

 (a1, . . . , an) = I,

aTi aj = δij: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.
Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BTB = I.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m× n, call A− a generalised inverse if

AA−A = A.

We quote:
1. Generalised inverses always exist (but need not be unique),
2. If the linear equation

Ax = b
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is consistent (has at least one solution), then a particular solution is

x = A−b.

Eigenvalues and eigenvectors.
If A is square, and

Ax = λx (x 6= 0),

λ is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor c, as A(cx) = λ(cx)). Then

(A− λI)x = 0

has non-zero solutions x, so infinitely many solutions cx, so A−λI is singular:

|A− λI| = 0.

If A is n × n, this is a polynomial equation of degree n in λ. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L19-L20), there are n roots
λ1, . . . , λn (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matrix is singular iff it has 0 as an eigenvalue.

Since the coefficient of λn in the polynomial p(λ) := |A − λI| is (−)n, p(λ)
factorises as

p(λ) := |A− λI| = (−)n
n∏
1

(λ− λi).

Put λ = 0:

|A| =
n∏
1

λi : the determinant is the product of the eigenvalues.

Match the coefficients of (−λ)n−1: in the RHS, we get a λi term for each i, so
the coefficient is

∑
i λi, the sum of the eigenvalues. In the LHS, we get an aii

term for each i, so the coefficient is
∑
aii, the sum of the diagonal elements

of A, which is called the trace of A. Comparing:

tr A =
∑
i

λi : the trace is the sum of the eigenvalues.
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Properties.
1. If A is symmetric, eigenvectors xi, xj corresponding to distinct eigenvalues
λi, λj are orthogonal.
Proof. Axi = λixi, so xTi A

T = λix
T
i , or xTi A = λix

T
i as A is symmetric.

So xTi Axj = λix
T
i xj. Interchanging i and j and transposing (or arguing as

above), xTi Axj = λjx
T
i xj. Subtract: (λi − λj)x

T
i xj = 0, so xTi xj = 0 as

λi 6= λj. //
2. If A is real and symmetric, its eigenvalues are real. For Ax = λx; tak-
ing complex conjugates gives Ax = λx as A is real. Transposing, as A is
symmetric, this gives xTA = λxT . So xTAx = λxTx. Also Ax = λx, so
xTAx = λxTx. Subtract: 0 = (λ− λ)xTx. But if x has jth element xj + iyj,

xTx =
∑

j(x
2
j + y2j ), positive as x is non-zero. So λ

T
= λ, and λ is real. //

Note. The same proof shows that if A is anti-symmetric – AT = −A – the
eigenvalues are purely imaginary.
3. If A is real and orthogonal, its eigenvalues are of unit modulus: |λ| = 1.
Proof. If Ax = λx, Ax = λx as A is real, so xTAT = xTλ. So xTATAx =
xTλ.λx, which as A is orthogonal is xTx = λλ.xTx. Divide by xTx =

∑
i x

2
i >

0 (as x 6= 0): λ.λ = |λ|2 = 1. //
4. If C, A are similar (C = B−1AB), A has eigenvalues λ and eigenvectors
x – then C has eigenvalues λ and eigenvectors B−1x .
Proof. |A−λI| = 0, so |C−λI| = |B−1AB−λB−1IB| = |B−1||A−λI||B| = 0.
So C has eigenvalues λ. C(B−1x) = (B−1AB)(B−1x) = B−1Ax = B−1λx =
λ(B−1x), so C has eigenvectors B−1x. //
Corollary. Similar matrices have the same determinant and trace.
Proof. These are the product and sum of the eigenvalues. //
5. If A is non-singular, the eigenvalues of A−1 are the reciprocals λ−1 of the
eigenvalues λ of A, and the eigenvectors are the same.
Proof. Ax = λx, so x = A−1λx, so A−1x = λ−1x. //
6. A is singular iff it has an e-value 0. For, the determinant is the product
of the e-values.

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A = ΓΛΓT =
∑

λiγiγ
T
i ,

with Λ = diag(λi) the diagonal matrix of eigenvalues λi, Γ = (γ1, . . . , γn) an
orthogonal matrix with columns γi standardised eigenvectors (γTi γi = 1).

7



We give a more general result (SVD) below. As a corollary, one can show
that for A symmetric, its rank r(A) is the number of non-zero eigenvalues.
Square root of a matrix.

If A is symmetric, with decomposition as above, and we define Λ1/2 :=
diag(λ

1/2
i ), then putting

A1/2 := ΓΛ1/2ΓT ,

A1/2A1/2 = ΓΛ1/2ΓTΓΛ1/2ΓT

= ΓΛ1/2Λ1/2ΓT (Λ is orthogonal)

= ΓΛΓT (Λ = diag(λi))

= A.

We call A1/2 the square root of A. If also A is non-singular (so no eigenvalue
is 0, so each λ−1i is defined), write

A−1/2 := ΓΛ−1/2ΓT .

A similar argument shows that

A−1/2A−1/2 = A−1,

so we call A−1/2 the square root of A−1, and the inverse square root of A.
Positive definite matrices.

If A (n × n) is real and symmetric, A is positive definite (respectively
non-negative definite) if

xTAx > 0 (respectively ≥ 0) for all non-zero x.

Here xTAx =
∑n

i,j=1 xiaijxj =
∑n

i=1 aiix
2
i +

∑
i 6=j aijxixj is a quadratic form

in the n variables x1, . . . , xn (one can replace
∑

i 6=j by 2
∑

i<j).
By the Spectral Decomposition Theorem,

xTAx = xTΓΛΓTx = yTΛy (y := ΓTx)

=
∑

λiy
2
i .

So A is non-negative definite (positive definite) iff
∑

i λiy
2
i ≥ 0 for all y (> 0

for all non-zero y) iff all λi ≥ 0 (> 0):
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Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).

Matrices of the form ATA are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since xTATAx = (Ax)T (Ax) =
yTy =

∑
y2i ≥ 0, with y := Ax. So all eigenvalues of ATA are non-negative.

2. ATA is positive definite iff all eigenvalues are positive iff ATA is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Ax = 0),
N(A) = N(ATA).
4. ATA, AT and A have the same rank.

2. Singular-values decomposition (SVD).
The following algebraic result is extremely important in Statistics, and

in Numerical Analysis. I used [HJ] 3.0, 3.1, [GvL] 2.5; one reference to a
standard Linear Algebra book is
S. ROMAN, Advanced linear algebra, 3rd ed., Springer, 2008 (or 2nd ed. –
not in 1st ed.).
For a statistical treatment, see e.g. Krzanowski [K] (theory, Section 4.1, ap-
plications, Ch. 4), or
[R] C. R. RAO, Linear statistical inference and its applications, 2nd ed., Wi-
ley, (1973) (1st ed. 1965), 1c(v).
For proof, see there, or SMF 2012 (on course website).

Theorem (Singular-Values Decomposition, SVD). If A (n × p) has
rank r, A can be written

A = ULV T ,

where U (n × r) and V (p × r) are column-orthogonal (UTU = V TV = Ir)
and L (r × r) is a diagonal matrix with positive elements, and

A =
r∑
i=1

λiuiv
T
i ,

where
(i) the λi are the square roots of the positive eigenvalues of ATA (or AAT ) –
the singular values;
(ii) the vectors ui, vi are eigenvectors of AAT and ATA – the left and right
singular vectors.
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(For A square and symmetric, this reduces to the Spectral Decomposition).
Eckart-Young Theorem.

The summands uiv
T
i are of rank one (indeed, the general rank-one matrix

is of this form). Then (C. H. ECKART (1902-73), G. YOUNG in 1936) with
the singular values ranked in order of decreasing size, retaining the first k
terms in SVD gives the best approximation (in the sense of a suitable matrix
norm – the Frobenius norm) to A by a matrix of rank k. The statistical
importance of this was studied by I. J. GOOD (1916-2009) in 1969.
Generalised Inverses and SVD.

Recall that the generalised inverse A− of A satisfies AA−A = A. If A has
SVD A = ULV T , one can check that

A− := V L−1UT

is a generalised inverse of A.
Numerical stability.

Part of the practical importance of SVD lies in the fact that it has good
numerical stability properties. Small perturbations of a matrix cause only
small perturbations of its SVD, so round-off error etc. is not serious.

3. Statistical setting.
Usually in Statistics we have univariate data x = (x1, . . . , xn), and have to

analyse it. Sometimes, however, each observation contains several different
readings (measurements, for example) on the same ‘individual’, or object.
We then need a two-suffix notation just to describe the data, and so we use
matrices throughout.
Notation. We assume that p variables are measured on each of n objects.
We assemble the np readings into a data matrix

X =

 x11 . . . x1p
...

...
xn1 . . . xnp

 ,

where xij is the observation on the jth variable measured on the ith reading.

As always, n may be large – the larger the better, as large samples are
more informative than small ones. The size of p varies with the problem.
But typically p might be of the order of 10 or 12, say. A 12-dimensional
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‘variable space’ is unwieldy for many purposes, and we might want a lower-
dimensional representation of the data, with as little loss of information as
possible. Background: [MKB] Ch. 1, [K] Ch. 1.
Notation.

X = (x(1), . . . , x(p)) =

 xT1
...
xTn

 .

So the column-vectors xi, x(j) relate to the ith object and the jth variable.
Mean vector. xi := 1

n

∑n
r=1 xri is the sample mean of the ith variable; the

sample mean vector is

x :=

 x1
...
xp

 .

The sample variance sij between the ith and jth variables is

sij :=
1

n

n∑
r=1

(xri − xi)(xrj − xj) =
1

n

n∑
r=1

xrixrj − xixj.

Form these into a matrix, the sample covariance matrix S := (sij):

S =
1

n

n∑
r=1

(xr − x)(xr − x)T =
1

n

n∑
r=1

xrx
T
r − x xT .

Now XT = (x1, . . . , xn) (row of columns corresponding to objects), so

XXT = (x1, . . . , xn)

 xT1
...
xn

 =
∑

xrx
T
r .

Write 1 for a column-vector of n 1s. Then (check) 11T is the n × n matrix
with each element 1, and (check) XT11TX = n2x xT . So

S =
1

n
XTX − 1

n2
XT11TX =

1

n
XTHX, where H := I − 1

n
11T

is the n × n centring matrix. We call M := XTX =
∑n

1 xrx
T
r the matrix of

sums of squares and products.
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Since sii is the sample variance of the ith variable, si :=
√
sii is its sample

SD. Form the sample correlation matrix R := (rij), where

rij := sij/sisj

is the sample correlation coefficient between the ith and jth variables (so
|rij| ≤ 1). If

D := diag(si) = diag(
√
sii),

R = D−1SD−1, S = DRD.

One can check:
(i) H is symmetric and idempotent (i.e. H2 = H);
(ii) S is symmetric and non-negative definite;
(iii) R is symmetric and non-negative definite.
Scaling.

If our data is subjected to an affine transformation (change of location
and scale) x 7→ y := Ax + b, then (check) y = Ax + b, and Sy = ASxA

T . In
particular, if

yr := D−1(xr − x) (∗)

then Y has mean vector 0 and covariance matrixD−1S(D−1)T = D−1SD−1 =
R, the correlation matrix of X. So the affine transformation (∗) scales the
data X to new data Y , with zero means and unit variances (1s on the di-
agonal of Sy – and correlations = covariances rij of modulus ≤ 1 off the
diagonal). This eliminates dependence of the data on arbitrary choices of
location and scale in the units, and makes the data dimensionless.
Mahalanobis transformation.

Recall that S is non-negative definite, and is positive definite in the typ-
ical, or generic, case. Then S−1 exists, and hence so do S±1/2. If

zr := S−1/2(xr − x) (r = 1, . . . , n), (∗∗)

then Z has mean vector 0 and covariance matrix S−1/2SS−1/2 = I. The map
X 7→ Z is the Mahalonobis transformation, which not only centres (means
to 0) and scales (variances to 1) as above, but also makes the variables un-
correlated.
Principal component transformation.

By the Spectral Decomposition Theorem, we can write S = GLGT , where
G is an orthogonal matrix and L is a diagonal matrix of eigenvalues of S.

12



Since S is non-negative definite, its eigenvalues `i are non-negative, and
w.l.o.g. we can re-order the variables so that they decrease in size:

`1 ≥ `2 ≥ . . . ≥ `p ≥ 0.

The principal component transformation

yr := GT (xr − x) (r = 1, . . . , n) (∗ ∗ ∗)

takes data X to new data Y , with zero mean and covariance matrix Sy =
GTSxG = GTGLGTG = L, as G is orthogonal: Sy = L is diagonal. So the yr
are uncorrelated linear combinations of the data, called principal components.
R-techniques and Q-techniques.

Multivariate Analysis splits into two broad areas. In the first, we are
interested in the p variables, that is, in the p columns of our data matrix.
Methods used here are called R-techniques, because they depend on the cor-
relation matrix R. In the second, we are interested in the n objects, that is,
in the n rows of our data matrix. Methods used here are called Q-techniques,
because they deal directly with the source data (Quelle = source, German).
R-techniques include:

principal components analysis (PCA) [MKB Ch. 8, K 2.3];
factor analysis [MKB Ch. 9, K 16.2];
canonical correlation analysis [MKB Ch. 10, K 14.5].

Q-techniques include:
discriminant analysis [MKB Ch. 11, K 12.3];
cluster analysis [MKB Ch. 13, K 3.1, 9.4];
multidimensional scaling [MKB Ch. 14, K 3.2, 3.3, 9.3].

4. Sample and Population
To describe the population in the p-dimensional case, we need a population

mean (vector) and a population covariance (matrix):

µ := Ex; Σ := var x = E[(x− µ)(x− µ)T ].

Then (check)

E[x] = µ, var(x) =
1

n
Σ, E[S] =

n− 1

n
.Σ.

The unbiased sample covariance matrix is

Su :=
n

n− 1
S;
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then E[Su] = Σ, so Su is unbiased as an estimator for Σ (as in one dim.).
Objectives.
R-techniques. Here we are interested in the p variables (columns of X). If
p = 2 we can use plots in two dimensions (paper, whiteboard, computer
screen); if p = 3, we can use our 3-dimensional geometric intuition, and
then use computer graphics (based on projective geometry) to represent 3-
dimensional reality in 2 dimensions. But if p is 10 or 12, say, it is hard to visu-
alise the data in 10 or 12 dimensions, and so we seek some lower-dimensional
representation of the data. This will entail some loss of information, which
we seek to minimise. We also seek a parsimonious summarisation of the
data (Principle of Parsimony; Occam’s Razor; Einstein’s Dictum). One use-
ful technique here is PCA (below). Another is projection pursuit.
Q-techniques. Here we are interested in the objects. We might want to
(i) represent them as points in space, with closeness corresponding to simi-
larity (multidimensional scaling);
(ii) subdivide or classify into types (cluster analysis);
(iii) assign objects to types (e.g. two types – discriminant analysis).
Exploratory Data Analysis (EDA).

As in one dimension, one should begin by ‘getting to know the data’ by
examining it visually. Check for unusual readings (which may be errors –
or may be valid and highly informative!), or outliers, and decide what to do
about any missing readings (e.g. fill in from existing readings – ‘imputation’).

5. Principal Components Analysis (PCA)
PCA is due to Harold Hotelling (1895-1978) in 1933, following Karl Pear-

son (1857-1936) in 1901.
We met PCA above in its sample form (see (∗ ∗ ∗)); we now turn to the

population counterpart of this. We take a random p-vector x, with mean µ
and covariance matrix Σ (no distributional assumptions yet). By spectral
decomposition of Σ,

Σ = ΓΛΓT , Λ = ΓTΣΓ (Σ =

p∑
1

λiγiγ
T
i ),

with Λ = diag(λi), λ1 ≥ . . . ≥ λp ≥ 0 the e-values of Σ, w.l.o.g. in decreasing
order, Γ = (γ1, . . . , γp) the orthogonal matrix of eigenvectors. Write

y := ΓT (x− µ) : yi = γTi (x− µ),
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is called the ith principal component of x. Then (check)

Ey = 0, var y = Λ,

a diagonal matrix, so the yi are uncorrelated. Also the var yi = λi are in
decreasing order; their sum and product are the trace and determinant of Σ.

Definition. A linear combination aTx =
∑p

1 aixi of x is a standardised linear
combination (SLC) if

∑p
1 a

2
i = 1 (i.e. aTa = 1).

Theorem. The first principal component

y1 = γT1 (x− µ)

is the SLC of x with the largest variance, λ1.

Proof. Since γTi γi = 1 (the eigenvectors are normalised to have length 1), y1
is a SLC, and has variance λ1 by above. If α := aTx is any other SLC, write

a = c1γ1 + . . .+ cpγp

(any p-vector can be written like this, as the columns γi are linearly inde-
pendent, so form a basis). Then

var α = var(aTa) = aTΣa = (
∑
i

ciγ
T
i )(
∑
j

λjγjγ
T
j )(
∑
k

ckγk)

=
∑
ijk

ciλjckγ
T
i γjγ

T
j γk =

∑
ijk

ciλjckδijδjk =

p∑
1

λic
2
i .

But
∑
c2i = 1 and λ1 ≥ . . . ≥ λp ≥ 0, so var α =

∑
λic

2
i is maximised for

c1 = 1, ci = 0 for i = 2, . . . , p, when a = γ1, and its maximum value is λ1. //

Note. This choice of aTx = γT1 x differs from the first principal component
y1 = γT1 (x− µ) only by a constant γT1 µ, so has the same variance.

Theorem. For each k = 0, 1, . . . , p − 1, if λk > 0 the (k + 1)th principal
component

yk+1 = γTk+1(x− µ)
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is the SLC of x with largest variance uncorrelated with the first k principal
components, and this variance is λk+1.

Proof. If the SLC is aTx as above, then in the notation above

cov(aTx, yk) = cov(aTx, γTk (x− µ))

= E[(aTx− E(aTx)).γTk (x− µ)]

= E[aT (x− µ)(x− µ)Tγk] (γTk (x− µ) a scalar, so its own transpose)

= aTΣa (E[(x− µ)(x− µ)T ] = Σ)

=

p∑
1

ciγiΣγk =

p∑
1

ci(Γ
TΣΓ)ik,

which is
∑
ciλik by spectral decomposition, or

∑
ciλiδik as Λ is diagonal,

which is ckλk. This is 0 if aTx is uncorrelated with yk, but by assumption,
λk > 0 (and so λ1 ≥ . . . ≥ λk > 0). So ck = 0. Similarly, c1 = . . . = ck−1 = 0.
So a =

∑p
k+1 ciγi. As before, var(aTx) =

∑p
k+1 λic

2
i ; as the λi are decreasing

this is maximised for ck+1 = 1 and the rest 0, with maximum λk+1. //

Interpretation. We think of
p∑
1

var yi =

p∑
1

λi = trace(Λ) = trace(Σ)

as the ‘total variability’ in the distribution, and var y1 = λ1 the ‘contri-
bution’ of the 1st principal component y1 to ‘explaining’ this variability,
var y2 = λ2 the contribution of y2, etc. So λi/(λ1 + . . . + λp) is the propor-
tion of the total variability explained by the ith principal component, and
(λ1 + . . . + λi)/(λ1 + . . . + λp) is the proportion of the variability explained
by the first k PCs. So: if Σ has rank k < p, all the variability is explained
by the first k PCs (the remaining eigenvalues are 0).

How many components to retain?
If we retain k components, there is a trade-off between k large (to explain

more variability) and k small (to give a parsimonious representation). We
should choose k bearing in mind the purpose of our study.

To assist in choice of k, a diagram is often drawn. Plot the points (k, λk),
or equivalently (k, λk/(

∑
λi)), and join adjacent points by straight-line seg-

ments.As the λi decrease, the resulting ‘broken line’ (continuous piecewise-
linear function) decreases. We hope to see it decrease steeply at first, then
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more slowly, then level off. By analogy with mountain-sides, typically with
(i) the steepest, rocky or cliff, part at the top, then
(ii) a less steep, scree slope in the middle, then
(iii) a gently sloping grassy part below –
such a diagram is called a scree diagram (R. B. Cattell (1905-1998) in 1966).
Generally we will retain components until somewhere on the scree slope –
where depending on how we value parsimony v. accuracy. We may look for
an ‘elbow’, where the gradient flattens out.

Sample principal components
Return to our data matrix X. Let a be a unit p-vector. Then

Xa =

 xT1 a
...

xTna


gives n observations of a new variable xTa. The sample variance is aTSa,
where S is the sample variance matrix of X; we look for SLCs with maximum
variance. Let

S = GLGT

be the spectral decomposition of S, L = diag(li), with l1 ≥ . . . ≥ lp ≥ 0 the
e-values of S, G = (g1, . . . , gp) the orthogonal matrix of e-vectors:

yr := GT (xr − x) (r = 1, . . . , n)

takes the data matrix X to Y , with mean 0 and covariance matrix L, which
is diagonal, so the yr are uncorrelated. Now (check)

Y = (X − 1xT )G = (X − 1xT )(g1, . . . , gp), y(k) = (X − 1xT )gk

gives the SLC of maximal variance, lk, uncorrelated with y(1), . . . , y(k−1).
Taking the rth row,

yrk = (xTr − xT )gk = gTk (xr − x).

If the subscript r is unimportant, we can drop it: yi = gTi (x− x).
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Example: Examination scores ([MKB], 1.2.3, Table 1.2.1). This gives data
on 88 students’ scores on each of 5 Mathematics exams (Mechanics, Vectors,
Algebra, Analysis, Statistics); the first two are closed book (C), the last three
open book (O). So here n = 88, p = 5. The eigenvalues of S are

l1 = 679.2, l2 = 199.8, l3 = 102.6, l4 = 83.7, l5 = 31.8.

The five principal components are found.
1. y1 gives positive (and comparable) weighting to all 5 marks. This is thus
a weighted average of the marks, and reflects overall ability (or studiousness
– it is difficult to tell these apart from exam performances alone!).
2. y2 gives positive weight to C and negative weight to O. This is thus a con-
trast between open-book and closed-book exams. (Students differ greatly,
like people generally; most students have a definite preference here; this is
often gender-linked).
3. y3 gives positive weight to Vectors, Algebra and Aalysis, and negative
weight to Mechanics and Statistics. This is thus a pure-applied contrast (but
would also depend on who taught what!). Again, most students have a defi-
nite preference for one or the other.
The last two are less important, as l4, l5 are smaller and lack a clear inter-
pretation. We would retain 3 principal components here. We could also use
three factors (see above for references to factor analysis).

Similarly for financial stock prices, where the three main factors may be:
state of the economy; industrial sector; quality of management.
Covariances v. correlations.

One of the main problems with PCA is that it is scale-dependent: the
outcome depends on the numbers, hence on the units used. The choice of
units is often arbitrary, and then PCA does not have any intrinsic meaning.
Also PCA looks for SLCs of maximum variability, and the variability can
be increased arbitrarily by blowing up the scale in which some variable is
measured. So we need to look at and choose the scale of each variable, and
this depends on context.

If we use the covariance matrix S, we allow different variables to have
differing importance. If we standardise each variance to 1, we pass from S to
the correlation matrix R. This is independent of scale and intrinsically mean-
ingful, but now all p variables have the same importance, which may/may
not be sensible, depending on context. Moral: think carefully whether to use
S or R before doing PCA. For more here, see e.g. [K] 2.2.5, esp. p.65-66.
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