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IV: REGRESSION

1. Least Squares
The idea of regression is to take some sample of size n from some unknown

population (typically n is large – the larger the better), and seek how best to
represent it in terms of a smaller number of variables, typically involving p
parameters (p to be kept as small as possible, to give a parsimonious repre-
sentation of the data – so p is much smaller than n, p << n). Usually we will
have p explanatory variables, and represent the data as a linear combination
of them (the coefficients being the parameters) plus some random error, as
best we can. To do this, we use the method of least squares, and choose
the coefficients so as to minimise the sum of squares (SS) of the differences
between the observed data points and the linear combination. This gives us
a fitted value; what is left over is called a residual; thus

data = true value + error = fitted value + residual.

If the data forms an n-vector y and the parameters form a p-vector β, the
model equation is

y = Aβ + ε,

where A is a known n × p matrix of constants (the design matrix), and ε is
an n-vector of errors. In the full-rank case (where A has rank p), it can be
shown ([BF], 3.1) that the least-squares estimates (LSEs) of β are

β̂ = (ATA)−1ATy,

and (Gauss-Markov Theorem) that this gives the minimum-variance unbi-
ased (= ‘best’) linear estimator (or BLUE): in this sense least-squares is best.

Geometrically, the Method of Least Squares projects n-dimensional real-
ity onto the best approximating p-dimensional subspace. Indeed, the key role
is played by the projection matrix P = A(ATA)−1AT (or P = AC−1AT with
C := ATA the information matrix; P is n × n, C is p × p). P is also called
the hat matrix, H, as it projects the data y onto the fitted values ŷ = Aβ̂.

To make good statistical sense of this, we need a statistical model for the
error structure. We will use the multivariate normal distribution (Section 3),
whose estimation theory follows in Section 4.
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The most basic case is p = 2, where one fits a line (two parameters, slope
and intercept) through n data points in the plane. One can show (see e.g.
[BF], 1.2) that the least-squares (best) line is

y = a+ bx, b =
xy − x.y
x2 − x2

= sxy/sxx = rxysy/sx, a = y − bx.

(here sxy is the sample covariance between x and y, sxx = s2x is the sample
variance of x, rxy = sxy/(sxsy) the sample correlation coefficient). This is
the sample regression line. By LLN, its large-sample limit is the (population)
regression line,

y = α+ βx, β = ρσ2/σ1, α = Ey− βEx : y−Ey = (ρσ2/σ1)(x−Ex).

The multivariate normal reduces in this case to the bivariate normal in Sec-
tion 2; we treat this because of its fundamental importance and of how well
it illustrates the general case, also as it illustrates the ‘concrete’ way to do
conditioning, which seems at first sight ‘abstract’ when done the Kolmogorov
way (F22, SP) via σ-fields.

Motivating examples:
1. CAPM (I.6, W2). The Capital Asset Pricing Model looks at individual
risky assets and compares them with ‘the market’, or some proxy for it such
as an index. One seeks to ‘pick winners’ by maximising ‘beta’, or the slope
of the linear trend of asset price versus market price.
2. Examination scores (BF, 1.4). Here x is the ‘incoming score’ of an entrant
to an elite academic programme, y is the ‘graduating score’; the question is
how well does the institution pick its intake (i.e., how well does x predict y).
3. Galton’s height data (BF, 1.3). Here y = offspring’s height (adult sons,
say), x = average of parents’ heights.

2. The Bivariate Normal Distribution
Recall two of the key ingredients of statistics:
a. The normal distribution, N(µ, σ2), with mean µ, variance σ2 and density

f(x) =
1

σ
√

2π
exp{−1

2
(x− µ)2/σ2}.

b. Linear regression by the method of least squares (IV.1). This is for two-
dimensional (or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two questions arise:
(i) Why linear? (ii) What (if any) is the two-dimensional analogue of the
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normal law?
Consider the following bivariate density:

f(x, y) = c exp{−1

2
Q(x, y)}, (BivN)

where c is a constant, Q a positive definite quadratic form in x and y:

c =
1

2πσ1σ2
√

1− ρ2
, Q =

1

1− ρ2
[(x− µ1

σ 1

)2
−2ρ

(x− µ1

σ1

)(y − µ2

σ2

)
+
(y − µ2

σ2

)2]
.

Here σi > 0, µi are real, −1 < ρ < 1.
A full treatment of this basic and vitally important case is given in M5F22

Problems/Solutions 4. Recall that the crux is completing the square:

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1
√

2π
.

1

σ2
√

2π
√

1− ρ2
exp
(−1

2
(y − cx)2

σ2
2(1− ρ2)

)
, (∗)

where
cx := µ2 + ρ

σ2
σ1

(x− µ1).

This leads as before to the ten key facts:
Fact 1. f(x, y) is a joint density function (two-dimensional). Its marginal
density functions f1(x), f2(y) (one-dimensional) are given by
Fact 2. X, Y are normal: X ∼ N(µ1, σ

2
1), Y ∼ N(µ2, σ

2
2). So:

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
Fact 4. Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1).

Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

Fact 7. The correlation coefficient of X, Y is ρ.
Fact 8. The bivariate normal law has elliptical contours. For, the contours
are Q(x, y) = const, which are ellipses (as Galton found).
Fact 9. The joint MGF and joint CF of X, Y are

MX,Y (t1, t2) = M(t1, t2) = exp(µ1t1 + µ2t2 +
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2

2t
2
2]),
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φX,Y (t1, t2) = φ(t1, t2) = exp(iµ1t1 + iµ2t2 −
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2t

2
2]).

Fact 10. X, Y are independent if and only if ρ = 0.

3. The Multivariate Normal Distribution.
With one regressor, we used the bivariate normal distribution as above.

Similarly for two regressors, we use the trivariate normal. With any number
of regressors, as here, we need a general multivariate normal - or ‘multinor-
mal’ - distribution in n dimensions. We must expect that in n dimensions,
to handle a random n-vector X = (X1, · · · , Xn)T , we will need
(i) a mean vector µ = (µ1, · · · , µn)T with µi = EXi, µ = EX,
(ii) a covariance matrix Σ = (σij), with σij = cov(Xi, Xj): Σ = covX.

First, note the effect of a linear transformation:

Proposition 1. If Y = AX + b, with Y,b m-vectors, A an m×n
matrix and X an n-vector,
(i) the mean vectors are related by EY = AEX + b = Aµ+ b,
(ii) the covariance matrices are related by ΣY = AΣAT .

Proof. (i) This is just linearity of E: Yi =
∑

jaijXj + bi, so

EYi =
∑

j
aijEXj + bi =

∑
j
aijµj + bi,

for each i. In vector notation, this is µY = Aµ+ b.
(ii) Yi − EYi =

∑
kaik(Xk − EXk) =

∑
kaik(Xk − µk), so

cov(Yi, Yj) = E[
∑

r
air(Xr−µr)

∑
s
ajs(Xs−µs)] =

∑
rs
airajsE[(Xr−µr)(Xs−µs)]

=
∑

rs
airajsσrs =

∑
rs

AirΣrs(A
T )sj = (AΣAT )ij,

identifying the elements of the matrix product AΣAT . //

Corollary. Covariance matrices Σ are non-negative definite.

Proof. Let a be any n × 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = Y T = XaT . Taking a = AT ,b = 0 above, Y has
variance [= 1× 1 covariance matrix] aTΣa. But variances are non-negative.
So aTΣa ≥ 0 for all n-vectors a. This says that Σ is non-negative definite. //
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We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions
of linear combinations tTX =

∑
itiXi, where t ranges over all fixed n-vectors.

Proof. Y := tTX has CF

φY (t) := E exp{itY } = E exp{ittTX}.

If we know the distribution of each Y , we know its CF φY (t). In particular,
taking t = 1, we know E exp{itTX}. But this is the CF of X = (X1, · · · , Xn)T

evaluated at t = (t1, · · · , tn)T . But this determines the distribution of X. //

Thus by the Cramér-Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (ρ = ±1 as well as
−1 < ρ < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal distribution iff aTX has
a univariate normal distribution for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal,
(ii) Any vector of elements from a multinormal n-vector is multinormal. In
particular, the components are univariate normal.

Proof. (i) If Y = AX+c (A an m×n matrix, c an m-vector) is an m-vector,
and b is any m-vector,

bTY = bT (AX + c) = (bTA)X + bTc.

If a = ATb (an m-vector), aTX = bTAX is univariate normal as X is multi-
normal. Adding the constant bTc, bTY is univariate normal. This holds for
all b, so Y is m-variate normal.
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(ii) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.

Theorem 1. If X is n-variate normal with mean µ and covariance matrix
Σ, its CF is

φ(t) := E exp{itTX} = exp{itTµ− 1

2
tTΣt}.

Proof. By Proposition 1, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt), so Y has CF

φY (t) := E exp{itY } = E exp{ittTX} = exp{ittTµ− 1

2
t2tTΣt}.

Taking t = 1 (as in the proof of the Cramér-Wold device),

E exp{itTX} = exp{itTµ− 1

2
tTΣt}. //

Corollary. The components of X are independent iff Σ is diagonal.

Proof. The components are independent iff the joint CF factors into the prod-
uct of the marginal CFs. This factorization takes place, into Πj exp{iµjtj −
1
2
σjjt

2
j}, in the diagonal case only. //

Corollary. Two Gaussian random variables Xi, Xj are independent iff they
are uncorrelated, i.e. their correlation coefficient σij = 0 is zero.

Proof. Taking all the tk for k 6= i, j reduces the joint CF above to a bivariate
CF, which factorises as above (or as in Fact 10 of the bivariate normal dis-
tribution, IV.2 above) iff the cross-terms in titj are absent, i.e. iff σij = 0. //

So for Gaussians, uncorrelated implies independent (when the means ex-
ist). Independent always implies uncorrelated, by the Multiplication Theo-
rem: for independence,

E[(Xi − EXi)(Xj − EXj)] = E[Xi − EXi].E[Xj − EXj] = 0.0 = 0.

So for Gaussians, uncorrelated is equivalent to independent. This useful prop-
erty is wildly false in general! E.g.,

X := cos 2πU, Y := sin 2πU, U ∼ U(0, 1)
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are both uncorrelated (check), but heavily dependent (each determines U to
within two values, so determined the other to within two values).

Recall that a covariance matrix Σ is always
(a) symmetric (σij = σji, as σij = cov(Xi, Xj)),
(b) non-negative definite, written Σ ≥ 0: aTΣa ≥ 0 for all n-vectors a.

Suppose that Σ is, further, positive definite, written Σ > 0:

aTΣa > 0 unless a = 0.

The Multinormal Density.
If X is n-variate normal, N(µ,Σ), its density (in n dimensions) need not

exist (e.g. the singular case ρ = ±1 with n = 2). But if Σ > 0 (so Σ−1

exists), X has a density. The link between the multinormal density below
and the multinormal MGF above is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893.

Theorem (Edgeworth). If µ is an n-vector, Σ > 0 a symmetric positive
definite n× n matrix, then
(i)

f(x) :=
1

(2π)
1
2
n|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}

is an n-dimensional probability density function (of a random n-vector X,
say),
(ii) X has CF φ(t) = exp{itTµ− 1

2
tTΣt},

(iii) X is multinormal N(µ,Σ).

Proof. Write Y := Σ−
1
2 X (Σ−

1
2 exists as Σ > 0, by above). Then Y has

covariance matrix Σ−
1
2 Σ(Σ−

1
2 )T . Since Σ = ΣT and Σ = Σ

1
2 Σ

1
2 , Y has

covariance matrix I (the components Yi of Y are uncorrelated).

Change variables as above, with y = Σ−
1
2 x, x = Σ

1
2 y. The Jacobian

is (taking A = Σ−
1
2 ) J = ∂x/∂y = det(Σ

1
2 ),= (detΣ)

1
2 by the product

theorem for determinants. Substituting, the integrand is

exp{−1

2
(x−µ)TΣ−1(x−µ)} = exp{−1

2
(Σ

1
2 y−Σ

1
2 (Σ−

1
2µ))TΣ−1(Σ

1
2 y−Σ

1
2 (Σ−

1
2µ))}.

Writing ν := Σ−
1
2µ, this is

exp{−1

2
(y − ν)TΣ

1
2 Σ−1Σ

1
2 (y − ν)} = exp{−1

2
(y − ν)T (y − ν)}.
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So by the change-of-density formula, Y has density

g(y) =
1

(2π)
1
2
n|Σ|

1
2

.|Σ|
1
2 . exp{−1

2
(y − ν)T (y − ν)}.

This factorises as

Πn
i=1

1

(2π)
1
2

exp{−1

2
(yi − νi)2}.

So the components Yi of Y are independent N(νi, 1). So Y is multinormal,
N(ν, I).
(i) Taking A = B = Rn,

∫
Rn f(x)dx =

∫
Rn g(y)dy,= 1 as g is a probability

density, as above. So f is also a probability density (non-negative and inte-
grates to 1).

(ii) X = Σ
1
2 Y is a linear transformation of Y, and Y is multivariate normal,

N(ν, I). So X is multivariate normal.

(iii) EX = Σ
1
2EY = Σ

1
2ν = Σ

1
2 .Σ−

1
2µ = µ, covX = Σ

1
2 covY(Σ

1
2 )T =

Σ
1
2 IΣ

1
2 = Σ. So X is multinormal N(µ,Σ). So its CF is

φ(t) = exp{itTµ− 1

2
tTΣt}. //

Note. The inverse Σ−1 of the covariance matrix Σ is called the concentration
matrix, K.

Conditional independence of two components Xi, Xj of a multinormal
vector given the others can be identified by vanishing of the (off-diagonal)
(i, j) entry kij in the concentration matrix K. The proof needs the results
on conditioning and regression in IV.6 W4 below, and the formula for the
inverse of a partitioned matrix; see SMF1415 Problems 6.

Independence of Linear Forms
Given a normally distributed random vector x ∼ N(µ,Σ) and a matrix

A, one may form the linear form Ax. One often encounters several of these
together, and needs their joint distribution – in particular, to know when
these are independent.

Theorem 3. Linear forms Ax and Bx with x ∼ N(µ,Σ) are independent
iff

AΣBT = 0.
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In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.

Proof. The joint CF is

φ(u,v) := E exp{iuTAx + ivTBx} = E exp{i(ATu +BTv)Tx}.

This is the CF of x at argument t = ATu +BTv, so

φ(u,v) = exp{i(uTA+ vTB)µ− 1

2
(ATu +BTv)TΣ(ATu +BTv)}

= exp{i(uTA+vTB)µ−1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent.

4. Quadratic forms in normal variates
We give a brief treatment of this important material; for full detail see

e.g. [BF], 3.4 – 3.6. Recall (IV.3)
(i) with x ∼ N(µ,Σ), linear forms Ax, BX are independent iff AΣBT = 0;
(ii) for a projection, P 2 = P (P is idempotent); for a symmetric projection,
P TP = P .
We restrict attention, for simplicity, to µ = 0, Σ = σ2I, x ∼ N(0, σ2I).

It turns out that the distribution theory relevant to regression depends on
quadratic forms in normal variates, xTAx for a normally distributed random
vector x, and that we can confine attention to projection matrices. For P a
symmetric projection,

xTPx = xTP TPx = (Px)T (Px),

which reduces from quadratic forms to linear forms – which are much eas-
ier! So: if xP1x, xP2x are quadratic forms in normal vectors x, with P1, P2

projections, xTP1x and xTP2x are independent iff

P1P2 = 0 :

P1, P2 are orthogonal projections. Recall that projections P1, P2 are orthog-
onal if their ranges are orthogonal subspaces, i.e.

(P1x).(P2x) = 0 ∀ x : xTP T
1 P2x = 0 ∀x; P T

1 P2 = 0 ∀x; P1P2 = 0
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for Pi symmetric. Note that for P a projection, I−P is a projection orthog-
onal to it:

(I−P )2 = I−2P+P 2 = 1−2P+P = I−P ; P (I−P ) = P−P 2 = P−P = 0.

If λ is an eigenvalue of A, λ2 is an eigenvalue of A2 (check). So if a
projection P has eigenvalue λ, λ2 = λ: λ = 0 or 1. Also, the trace is
the sum of the eigenvalues; for a projection, this is the number of non-zero
eigenvalues; this is the rank. So:

For a projection, the eigenvalues are 0 or 1, and the trace is the rank.

By Spectral Decomposition (III.1), a symmetric projection matrix P can be
diagonalised by an orthogonal transformation O to a diagonal matrix D:

OTPO = D, P = ODOT ;

as above, the diagonal entries dii are 0 or 1, and we may re-order so that the
1s come first. So with y := OTx,

xTPx = xTODOTx = yTDy = y21 + . . .+ y2r .

Normality is preserved under orthogonal transformations (check!), so also
y ∼ N(0, σ2I). So y21+. . .+y2r is σ2 times the sum of r independent squares of
standard normal variates, and this sum is χ2(r) (by definition of chi-square):

xTPx ∼ σ2χ2(r).

If P has rank r, I − P has rank n − r (where n is the sample size – the
dimension of the vector space we are working in):

xT (I − P )x ∼ σ2χ2(n− r),

and the two quadratic forms are independent.
It turns out that all this can be generalised, to the sum of several pro-

jections, not just two. This result – the key to all the distribution theory in
Regression – is Cochran’s theorem (William G. COCHRAN (1909-1980) in
1934); [BF] Th. 3.27):

Theorem (Cochran’s Theorem). If

I = P1 + . . .+ Pk
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with each Pi a symmetric projection with rank ni, then
(i) the ranks sum: n = n1 + . . .+ nk;
(ii) each quadratic form Qi := xTPix ∼ σ2χ2(ni);
(iii) Q1, . . . , Qk are mutually independent;
(iv) P1, . . . , Pk are mutually orthogonal: PiPj = 0 for i 6= j.

The quadratic forms that we encounter in Statistics are called sums of squares
(SS) – for regression (SSR), for error (SSE), for the hypothesis (SSH), etc.

Recall the definition of the Fisher F -distribution with degrees of freedom
(df) m and n (note the order): F (m,n) is the distribution of the ratio

F :=
U/m

V/n
,

with U , V independent chi-square random variables with df m, n (see e.g.
[BF] 2.3 for the explicit formula for the density, but we shall not need this).

Recall also (or, if you have not met these, take a look at a textbook):
(i) Analysis of variance (ANOVA) (see e.g. [BF] Ch. 2). Here one tests for
differences between the means of different (normal) populations by analysing
variances. Specifically, one looks at within-groups variability and between-
groups variability, and rejects the null hypothesis of no difference between
the group means if the second is too big compared to the first. As above,
one forms the relevant F -statistic, and rejects if F is too big. Here one has
qualitative factors (which group?).
(ii) Analysis of Covariance (ANCOVA) (see e.g. [BF] Ch. 5. Similarly for
ANCOVA, where one has both qualitative factors (as with ANOVA) and
quantitative ones (covariates), as with Regression.
(iii) Tests of linear hypotheses in Regression (II.4; see e.g. [BF] Ch. 6). Here
we reject if SSH is too big compared to SSE.

5. Estimation theory for the multivariate normal.
Given a sample x1, . . . , xn from the multivariate normal Np(µ,Σ), form

the sample mean (vector) and the sample covariance matrix as in the one-
dimensional case:

x̄ :=
1

n

n∑
i=1

xi, S :=
1

n

n∑
i=1

(xi − x̄)T (xi − x̄).
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The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.

Writing
xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑n

1 (xi − x̄) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1
n∑
1

(xi − x̄)T (xi − x̄))

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n trace(Σ−1S)− 1

2
n(x̄− µ)TΣ−1(x̄− µ)}.

Write (‘K for Konzentration’ – or, ‘V for variance’)

K := Σ−1 :

` = const− 1

2
n trace(KS)− (x̄− µ)TK(x̄− µ).

So by the Fisher-Neyman Theorem, (x̄, S) is sufficient for (µ,Σ) (equiva-
lently, for (µ,K)). It is in fact minimal sufficient (SMF1415 Problems 2 Q2).

These natural estimators are in fact the MLEs:

Theorem. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum
likelihood estimators for µ, Σ.
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Proof. As above, with K = (kij) := Σ−1, the likelihood is

L = const.|K|n/2 exp{−1

2
n trace(KS)− 1

2
n(x̄− µ)TK(x̄− µ)},

so the log-likelihood is

` = c+
1

2
n log |K| − 1

2
n trace(KS)− 1

2
n(x̄− µ)TK(x̄− µ).

The MLE µ̂ for µ is x̄, as this reduces the last term (the only one involving
µ) to its minimum value, 0. For A = (aij), its determinant is

|A| =
∑
j

aijAij

for each i, or

|A| =
∑
i

aijAij

for each j, expanding by the ith row or jth column, where Aij is the cofactor
(signed minor) of aij. From either,

∂|A|/∂aij = Aij,

so
∂ log |A|/∂aij = Aij/|A| = (A−1)ji,

the (j, i) element of A−1, recalling the formula for the matrix inverse (or
(A−1)ij if A is symmetric). Also, if B is symmetric,

trace(AB) =
∑
i

∑
j

aijbji =
∑
i,j

aijbij :

∂ trace(AB)/∂aij = bij.

Using these, and writing S = (sij),

∂ log |K|/∂kij = (K−1)ij = (Σ)ij = σij (K := Σ−1),

∂ trace(KS)/∂kij = sij.

So

∂`/∂vij =
1

2
n(σij − sij),

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ. //
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6. Conditioning and regression
In general, we should always use what we know. In Probability and Statis-

tics, this goes by the technical term of conditioning. This rests ultimately on
the formula P (A|B) := P (A ∩ B)/P (B) of elementary probability (applica-
ble only when P (B) > 0!), and its analogue with sums replaced by integrals
when densities exist (which they do not in general!). Both these elementary
cases are handled above in our treatment of the bivariate normal distribution
(IV.2). The general approach to conditioning is due to Kolmogorov in 1933,
and uses Measure Theory and σ-fields; see e.g. [SP]. We pause to make the
link between conditioning and regression.

Recall that the conditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/

∫
fX,Y (x, y)dy.

Conditional means.
The conditional mean of Y given X = x is

E(Y |X = x),

a function of x called the regression function (of Y on x). So, if we do not
specify the value x, we get E(Y |X). This is random, because X is random
(until we observe its value, x; then we get the regression function of x as
above). As E(Y |X) is random, we can look at its mean and variance.

Recall (SP, Ch. II)

Theorem (Conditional Mean Formula). E[E(Y |X)] = EY .

Interpretation. EY takes the random variable Y , and averages out all the
randomness to give a number, EY .
E(Y |X) takes the random variable Y , and averages out all the randomness
in Y NOT accounted for by knowledge of X.
E[E(Y |X)] then averages out the remaining randomness, which IS accounted
for by knowledge of X, to give EY as above.
Example: Bivariate normal distribution, N(µ1, µ2;σ

2
1, σ

2
2; ρ), or N(µ, σ),

µ = (µ1, µ2)
T , σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
σ11 σ12
σ12 σ22

)
.

Then

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1), so E(Y |X) = µ2 + ρ
σ2
σ1

(X − µ1) :
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E[E(Y |X)] = µ2 + ρ
σ2
σ1

(EX − µ1) = µ2 = EY, as EX = µ1.

As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:
X = incoming score of student [in medical school or university, say], Y =
graduating score;
X = child’s height at 2 years (say), Y = child’s eventual adult height,
or X = mid-parent height, Y = child’s adult height, as in Galton’s study.

Recall also (SP, Ch. II)

Theorem (Conditional Variance Formula).

varY = E[var(Y |X)] + var(E[Y |X]).

Interpretation.
varY = total variability in Y,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2
σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2
σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2;

var(Y |X = x) = σ2
2(1− ρ2), EXvar(Y |X) = σ2

2(1− ρ2).

Corollary. E(Y |X) has the same mean as Y and smaller variance (if any-
thing) than Y .

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so

varE[Y |X] ≤ varY

from the Conditional Variance Formula. //

15



This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a possible
estimator (or basis for an estimator) of θ. We would naturally want X to
contain all the information on θ contained within the entire sample. What
(if anything) does this mean in precise terms? The answer lies in the con-
cept of sufficiency (‘data reduction’ – I.4 W2) – one of the most important
contributions to statistics of the great English statistician R. A. (Sir Ronald)
Fisher (1880-1962) in 1920. In the language of sufficiency, the Conditional
Variance Formula is seen as (essentially) the Rao-Blackwell Theorem, a key
result in the area (see the index in your favourite Statistics book for more).

Regression.
In the bivariate normal, with X = mid-parent height, Y = child’s height,

E(Y |X = x) is linear in x (regression line). In a more detailed analysis, with
U = father’s height, V = mother’s height, Y = child’s height, one would
expect E(Y |U = u, V = v) to be linear in u and v (regression plane), etc.

In an n-variate normal distribution Nn(µ,Σ) (we restrict attention to Σ
non-singlular for simplicity), suppose that X = (X1, · · · , Xn) is partitioned
into X1 := (X1, · · · , Xr)

T and X2 := (Xr+1, · · · , Xn)T . Let the corresponding
partition of the mean vector and the covariance matrix be

µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where EXi = µi, Σ11 is the covariance matrix of X1, Σ22 that of X2,
Σ12 = ΣT

21 the covariance matrix of X1 with X2.

The concentration matrix (= precision matrix), K := Σ−1.
By Edgeworth’s Theorem, the (multinormal) distribution N(µ,Σ) of a

Gaussian n-vector is determined by the mean µ and the covariance matrix
Σ. Now the matrix entries σij := cov(Xi, Xj) in Σ are determined by the
behaviour of the coordinates of X two at a time, while those of the con-
centration matrix K := Σ−1 depend on the whole distribution (the Xi all
together). This makes K a better choice than Σ for some purposes, as it
captures structural information better (see below). Write as above

K =

(
K11 K12

K21 K22

)
,
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To proceed, we need the formula for the inverse of a partitioned matrix. You
can check that, when all inverses exist, this is given by(
A B
C D

)−1
=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
, M := (A−BD−1C)−1,

Lemma. If Σ is positive definite, so is Σ11.

Proof. xTΣx > 0 for all x 6= 0 as Σ is positive definite. Take x = (x1,0)T ,
where x1 has the same number of components as the order of Σ11 [i.e., in
matrix language, so that the partition of x is conformable with those of µ
and σ above]. Then x1Σ11x1 > 0 for all x1 6= 0. This says that Σ11 is positive
definite. //

One of the most important things about regression is the link between
linearity and Gaussianity: the conditional mean is linear in what one is con-
ditioning on:

Theorem. The regression of X2 on X1 is linear:

E(X2|X1 = x1) = µ2 + Σ21Σ
−1
11 (x1 − µ1) = µ2 −K−111 K12(x1 − µ1).

This is a special case of the next result (Exam1516, Q6). We make two
small changes: (a) interchange 1 and 2 (to reflect the shift of interest from
what is conditioned on, as here, to what is left, as there): (b) drop bold-face
in the notation (use the lightest notation that will do the job, and let context
speak for itself).

Theorem (Gaussian Regression Formula). If a multinormal vector x
is partitioned into x1 and x2, with µ, Σ, K partitioned accordingly, the
conditional distribution of x1 given x2 in terms of µ, K is

x1|x2 ∼ N(µ1 −K−111 K12(x2 − µ2), K
−1
11 ),

or in terms of µ and Σ,

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Corollary. The regression of x1 on x2 is linear:

E[x1|x2] = µ1 + Σ12Σ
−1
22 (x2 − µ2) = µ1 −K−111 K12(x2 − µ2).
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First Proof (densities). By Edgeworth’s theorem, if x ∼ N(µ,Σ), K := Σ−1,

f(x) ∝ exp{−1

2
(x− µ)TK(x− µ)}.

f(x1, x2) ∝ exp{−1

2
(xT1 − µT1 , xT2 − µT2 )

(
K11 K12

K21 K22

)(
x1 − µ1

x2 − µ2

)
},

giving (as a scalar is its own transpose, so the two cross-terms are the same)

exp{−1

2
[(xT1−µT1 )K11(x1−µ1)+2(xT1−µT1 )K12(x2−µ2)+(xT2−µT2 )K22(x2−µ2)]}.

So
f1|2(x1|x2) = f(x1, x2)/f2(x2)

∝ exp{−1

2
[(xT1 − µT1 )K11(x1 − µ1) + 2(xT1 − µT1 )K12(x2 − µ2)]}, (∗)

treating x2 here as a constant and x1 as the argument of f1|2. By Edgeworth’s
theorem again, if the conditional mean of x1|x2 is ν1,

f1|2(x1|x2) ∝ exp{−1

2
(xT1 − νT1 )V11(x1 − ν1)}, (∗∗)

for some matrix V11. So x1|x2 is multinormal. Equating coefficients of the
quadratic term, the conditional concentration matrix of x1|x2 is V11 = K11:

conc(x1|x2) = K11.

So the conditional covariance matrix is K−111 . Then equating linear terms in
(∗) and (∗∗) gives the conditional mean:

xT1K11ν1 = xT1K11µ1−xT1K12(x2−µ2) : ν1 := E[x1|x2] = µ1−K−111 K12(x2−µ2) :

x1|x2 ∼ N(µ1 −K−111 K12(x2 − µ2), K
−1
11 ).

Using the result above for the inverse of a partitioned matrix gives

M = K11, M−1 = K−111 = Σ11 − Σ12Σ
−1
22 Σ21,

K−111 K12 = M−1(−MBD−1) = −BD−1 = −Σ12Σ
−1
22 .

Combining,

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x− µ2),Σ11 − Σ12Σ

−1
22 Σ21). //
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Second Proof (CFs). Recall that AX,BX are independent iff AΣBT = 0,
or as Σ is symmetric, BΣAT = 0. Now

X1 = AX where A = (I,0),

X2−Σ21Σ
−1
11 X1 =

(
−Σ21Σ

−1
11 I

)( X1

X2

)
= BX, where B =

(
−Σ21Σ

−1
11 I

)
.

Now

BΣAT =
(
−Σ21Σ

−1
11 I

)( Σ11 Σ12

Σ21 Σ22

)(
I
0

)
=
(
−Σ21Σ

−1
11 I

)( Σ11

Σ21

)
= −Σ21Σ

−1
11 Σ11 + Σ21 = 0,

so X1 and X2 − Σ21Σ
−1
11 X1 are independent. Since both are linear transfor-

mations of X, which is multinormal, both are multinormal. Also,

E(BX) = BEX =
(
−Σ21Σ

−1
11 I

)( µ1

µ2

)
= µ2 − Σ21Σ

−1
11 µ1.

To calculate the covariance matrix, introduce C := −Σ21Σ
−1
11 , so B = (C I),

and recall ΣT
12 = Σ21, so CT = −Σ−111 Σ12:

var(BX) = BΣBT =
(

C I
)( Σ11 Σ12

Σ21 Σ22

)(
CT

I

)

=
(

C I
)( Σ11C

T + Σ12

Σ21C
T + Σ22

)
= CΣ11C

T + CΣ12 + Σ21C
T + Σ22

= Σ21Σ
−1
11 Σ11Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 + Σ22

= Σ22 − Σ21Σ
−1
11 Σ12.

By independence, the conditional distribution of BX given X1 = AX is
the same as its marginal distribution, which by above isN(µ2−Σ21Σ

−1
11 µ1,Σ22−

Σ21Σ
−1
11 Σ12). So given X1, X2−Σ21Σ

−1
11 X1 isN(µ2−Σ21Σ

−1
11 µ1,Σ22−Σ21Σ

−1
11 Σ12).

To pass from the conditional distribution of X2 −Σ21Σ
−1
11 X1 given X1 to

that of X2 given X1: just add Σ21Σ
−1
11 X1. Then

X2|X1 ∼ N(µ2 + Σ21Σ
−1
11 (X1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12). //
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Here Σ2|1 := Σ22 − Σ21Σ
−1
11 Σ12 is called the partial covariance matrix of X2

given X1.

Note. Here Σ2|1 := Σ22 − Σ21Σ
−1
11 Σ12 is called the partial covariance matrix

of X2 given X1.

The concentration matrix K := Σ−1 proves its value in terms of condi-
tional independence. For important result below, see e.g. Prop. 5.2 (§5.1.3)
in
Steffen L. LAURITZEN, Graphical models, OUP, 1996.
Note the contrast with our earlier result: two components are independent
iff the corresponding element σij of Σ is zero.

Theorem. In a Gaussian n-vector, two components (the ith and jth, say)
are conditionally independent given all the others iff the correspondng ele-
ment kij in the concentration matrix K is zero.

Proof. By relabelling the indices, we can assume i = 1 and j = 2. Con-
sider the 2-vector x1 of the first two coordinates of x. Then, from the first
proof above with V11 = K11 in (∗∗), the conditional density of the first two
coordinates given all the others is

f1|2(x1|x2) ∝ exp{−1

2
(xT1 − νT1 )K11(x1 − ν1)}.

The first two coordinates are conditionally independent given all the others
iff this (bivariate) conditional density factorises into the product of the two
marginals. This happens (as in the bivariate normal) iff the 2×2 matrix K11

is diagonal, i.e. iff its off-diagonal terms k12 = k21 are zero. //

Recall (see e.g. Probability for Statistics (the PfS link on my homepage),
Ch. V, Markov chains) the Markov property: for predicting the future, the
present gives the same as the present plus the past. Equivalently: a process
is Markov iff past and future are conditionally independent given the present.
So when the process is both Gaussian and Markov, the last result shows that
the concentration matrix will have many zeros, i.e. will be sparse, and the
pattern of zeros will be informative: it will give the order of the components
in time, to within time-reversal (as past and future are interchangeable here).
For the resulting Gaussian Msrkov theory, see e.g.
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H. RUE and L. HELD, Gaussian Markov random fields: Theory and appli-
cations, Chapman & Hall, 2005.

Note. 1. It often happens (e.g. in the Gaussian Markov case) that the con-
centration matrix K is sparse (most elements are zero), while its inverse the
covariance matrix Σ is dense (most elements are non-zero). While invert-
ing a matrix is straightforward theoretically, and not problematic for small
matrices (unless they are ill-conditioned — close to being singular, and so
numerically unstable), inverting large matrices numerically is a formidable
task. So K is preferred to Σ in such cases.
2. The need to handle matrix operations numerically in an efficient way is the
subject of Numerical Linear Algebra. This has grown greatly in importance
recently, partly as computers have grown more powerful, partly in view of
the prevalence of Big Data in applications.
3. We will meet conditional independence later in VII.7, Hierarchical models:
Markov chain Monte Carlo.
4. The argument above (match the quadratic terms first, then match the
linear terms) is the crux of a similar proof, involving mixed models in regres-
sion. Here, one has both fixed effects and random effects. The classic result
is Henderson’s mixed-model equations (widely used nowadays; it originated
in studies of selective breeding in the US dairy farming industry, where it
greatly improved efficiency). See e.g. [BF], §9.1.
5. Both the hierarchical models and the mixed models above occur in
Bayesian statistics, for which see Ch. VII.

Elliptical models
The multinormal, or Gaussian, model is wonderfully convenient mathe-

matically. In particular, the property of having linear regression is highly
convenient. However, we note two properties of normal or Gaussian distri-
butions, in any dimension:
(i) they are symmetrical, and so cannot model skewness;
(ii) they have extremely thin tails (so deviations of, say, 3 standard deviations
from the mean are very rare).
But these contradict common observation in finance!
Skew.

Profit and loss are profoundly asymmetrical! Large unexpected profits
are nice; large unexpected losses are lethal. Consequently, a given amount
of profit gives less pleasure than a given amount of loss gives pain. One can

21



see the same effect in prices falling below a peak once the market has turned
far faster than they increase when the market is rising (so one can detect the
arrow of time from time series of price data).
Tails.

Inspection (EDA) of any financial data set will reveal much fatter tails
than Gaussian. Typically, one sees heavy tails – tails that decay like a power
(as with the Student t-distributions).

There is a third problem, that arises in portfolio management, where we
have a range of assets (balanced, by Markowitzian diversification). The tails
of two different components of a multinormal vector are (asymptotically)
independent. By contrast, the negative tails (downside risk) of assets are
usually highly dependent: in a falling market, everything falls, and the tails
are heavily dependent.

For all these reasons, it is important to seek other models, which retain
as many as possible of the desirable properties of the normal but not the
disadvantages above. Such models exist – the elliptical, or elliptically con-
toured, models. These may be characterised in several ways. An elliptically
contoured distribution in n dimensions with mean vector µ and covariance
matrix Σ of rank k (with Cholesky decomposition Σ = ATA) has a stochastic
representation

X = µ+RATu (R : risk-driver);

here u is a random vector uniformly distributed over the unit sphere in k
dimensions and R ≥ 0 is a scalar random variable independent of u. Alter-
natively, X has CF

ψ(t) = eit
Tµφ(tTΣt)

for some scalar function φ. Thus φ(x) = e−
1
2
x gives the Gaussian case, and

choosing φ to decrease more slowly gives heavier tails, as required. For back-
ground, we refer to e.g. the book [MFE] and the paper [BFK].
Copulas.

Given a random n-vectorX = (X1, . . . , Xn), write F (x) = F (x1, . . . , xn) :=
P (X≤x1, . . . , Xn ≤ xn) for the joint distribution function, Fi(xi) := P (Xi ≤
xi) for the marginal distribution functions. Then by Sklar’s theorem (Abe
SKLAR (1915-) in 1958),

F (x) = C(F1(x1), . . . , Fn(xn))

for some distribution function C(u) = C(u1, . . . , un) on the unit n-cube. This
C is called the copula, as it couples the marginals together to give the joint
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distribution. It contains all the information on the dependence structure (vi-
tal for financial applications, as above!). For more, see e.g. [MFE] Ch. 5.

7. Generalised linear models (GLMs).
In Regression above, we took as our basic model

y = Aβ + ε : Ey = Aβ; Eyi =
∑
j

aijβj

– our data y (an n-vector) is modelled as a linear transformation (by a known
matrix A, the design matrix, n × p) of a p-vector β of parameters, plus an
error. That is, we work with linear combinations of predictors plus error; in
particular, the mean µ is given by a linear predictor, η. This simple procedure
is surprisingly general and effective, but there are situations where it does not
apply. We turn to these, seeking to use as much as possible of the approach
above.

First, we generalise this by allowing the linear predictor η to be some
(smooth and monotone, so invertible) function g of the mean µ:

η = g(µ),

where g is called the link function, or link. Next, we need to specify the error
structure. This is done by means of exponential families (see e.g. SMF1415
I.6.4, D2): the yi are independent, with densities

f(yi) = exp{ωi(yiθi − b(θi))
φ

+ c(y, φ)};

here b, c are known functions, ωi are known weights, φ is a scale parameter
(known or unknown), and the parameter θi depends on η.

The case where this dependence is given by the identity,

θ = η,

is particularly important; here the link is called canonical.
GLMs were introduced by Nelder and Wedderburn in 1972; our treatment

here follows [BF] Ch. 8. The standard work is
[McN] P. McCULLAGH and J. A. NELDER, Generalised linear models, 2nd
ed., 1989, Chapman and Hall (1st ed. 1983).
They have been extended to hierarchical GLMs (see Ch. VII):
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[NLP] J. A. NELDER, Y. LEE and Y. PAWITAN, Generalised linear models
with random effects: unified analysis via H-likelihood. Chapman and Hall,
2006.
Examples.
1. Normal. Here g(µ) = µ, the errors are normal, and the GLM reduces to
the ordinary Linear Model above – as was to be expected!
2. Poisson. For the Poisson distribution P (λ), writing y for the usual k =
0, 1, 2, . . .,

f(y, k) = e−λλy/y! = exp{y log λ− λ− log y!}.

So θ = η = log λ: the canonical link is the logarithm:

η = log λ.

The Poisson law is the default option for count data. The log here explains
the use of logs in log-linear models for count data – contingency tables, etc.
(Pearson’s chi-square goodness-of-fit test, 1900). See e.g. [BF] 8.3 – 8.5.
3. Gamma. The Gamma density Γ(λ, α) (λ, α > 0) has density f(x) =
λαe−λxxα−1/Γ(λ) on (0,∞). The mean is µ = α/λ, and the canonical link
is η = 1/µ. The Gamma is the default option for error structure on (0,∞);
here it is often used with the log-link η = log µ. See e.g. [BF] 8.2.3 for an
application (to athletics times).
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