
smfw5 Week 5, 14 & 16.2.2017

V: TIME SERIES

The core of Time Series (TS) analysis is ARMA(p, q) (V.1 below), a com-
bination of AR(p) (autoregressive with p parameters) and MA(q) (moving
average with q parameters). For a thorough textbook treatment, see (in ad-
dition to the references under V in W0)
[BJ] G. E. P. BOX and G. M. JENKINS, Time series analysis: forecasting
and control, Holden-Day, 1970, 553 p (4th ed., with G. C. REINSEL, Wiley,
2008, 746p).
Box and Jenkins did not invent ARMA, but the Box-Jenkins approach did
provide econometricians and other applied workers with a toolkit – a proce-
dure – that they could use; this made TS much more accessible than it had
been previously, and so the book was very influential in its time.

We will have to take AR(p), MA(q) and other introductory material for
granted here. For background and details, see SMF1415 and QRM (Mikko
Pakkanen’s Quantitative Risk Management course last semester).

1. Autoregressive moving average processes, ARMA(p,q).
As above: because the theory of autoregressive modelsAR(p) and moving-

average models MA(q) is covered in QRM, we can be brief here.
We can combine the AR(p) and MA(q) models as follows:

Xt =
∑p

1
φiXt−i + εt +

∑q

1
θiεt−i, (εt) WN(σ2)

or
φ(B)Xt = θ(B)εt,

where B is the lag operator, B : Xt 7→ Xt−1 and

φ(λ) = 1− φ1λ− · · · − φpλp, θ(λ) = 1 + θ1λ+ · · ·+ θqλ
q.

We shall assume that the roots of φ(λ and θ(λ) all lie outside the unit disc.
Then, as in the Conditions for Stationarity and Invertibility for AR(p) and
MA(q), the process (Xt) is both stationary and invertible, and

Xt = (φ(B))−1θ(B)εt.
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Now θ(λ)/φ(λ) is a rational function (ratio of polynomials). We shall assume
that θ(λ), φ(λ) have no common factors. For if they do:
(i) the common factors can be cancelled from (φ(B))−1θ(B), leaving an equiv-
alent model but with fewer parameters - so better;
(ii) we have no hope of identifying parameters in the factors thus cancelled.
Thus the model is non-identifiable. So to get an identifiable model, we need
to perform all possible cancellations. We assume this done in what follows.
Note. Generally in statistics, we try to work with identifiable models. These
are the ones in which the task of estimating parameters from the data is
possible in principle. Non-identifiable models are problematic.

Of course: ARMA(p, 0) ≡ AR(p), ARMA(0, q) ≡MA(q).
ARMA(1,1).

Xt = φXt−1 + εt + θεt−1 : (1− φB)Xt = (1 + θB)εt.

Condition for Stationarity: |φ| < 1 (assumed).
Condition for Invertibility: |θ| < 1 (assumed).

Xt = (1− φB)−1(1 + θB)εt = (1 + θB)(
∑∞

0
φiBi)εt

= εt +
∑∞

1
φiBiεt + θ

∑∞

0
φiBi+1εt = εt + (θ + φ)

∑∞

1
φi−1Biεt :

Xt = εt + (φ+ θ)
∑∞

i=1
φi−1εt−i.

Variance: lag τ = 0. Square and take expectations. The εs are uncorrelated
with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (φ+ θ)2

∑∞

1
φ2(i−1)σ2

= σ2 +
(φ+ θ)2σ2

(1− φ2)
= σ2(1− φ2 + φ2 + 2φθ + θ2)/(1− φ2) :

γ0 = σ2(1 + 2φθ + θ2)/(1− φ2).

Covariance: lag τ ≥ 1.

Xt−τ = εt−τ + (φ+ θ)
∑∞

j=1
φj−1εt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],
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= E{[εt + (φ+ θ)
∑∞

i=1
φi−1εt−i].[εt−τ + (φ+ θ)

∑∞

j=1
φj−1εt−τ−j]}.

The εt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the εt−τ in the second [.] give (φ + θ)φτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (φ+ θ)2φτ+j−1.φj−1.σ2. So

γτ = (φ+ θ)φτ−1σ2 + (φ+ θ)2φτσ2
∑∞

j=1
φ2(j−1).

The geometric series is 1/(1− φ2) as before, so for τ ≥ 1

γτ =
(φ+ θ)φτ−1σ2

(1− φ2)
.[1−φ2+φ(φ+θ)] : γτ = σ2(φ+θ)(1+φθ)φτ−1/(1−φ2).

Autocorrelation. The autocorrelation ρτ := γτ/γ0 is thus

ρ0 = 1, ρτ =
(φ+ θ)(1 + φθ)

(1 + 2φθ + θ2)
.φτ−1 (τ ≥ 1).

Note that

ρ1 = (φ+ θ)(1 + φθ)/(1 + 2φθ + θ2), ρτ/ρτ−1 = φ (τ ≥ 1) :

ρ0 = 1 always, ρ1 is as above, and then ρτ decreases geometrically with com-
mon ratio φ. This is the signature of an AR(1, 1) process: if the correlogram
looks geometric after the r1 term, try an AR(1, 1).

2. ARMA modelling; The general linear process

The model equation φ(B)Xt = θ(B)εt for an ARMA(p, q) process may
sometimes have a direct interpretation in terms of the mechanism generating
the model. Usually, however, ARMA models are tried and fitted to the
data empirically. Their principal use is that ARMA(p, q) models are so
flexible: a wide range of different examples may be satisfactorily fitted by
an ARMA model with small values of p and q, so with a small number
p + q of parameters. This ability to use a small number of parameters is an
advantage, by the Principle of Parsimony. The drawback is that the ARMA
model may not correspond well with the actual data-generating mechanism,
and so the p + q parameters φi, θj may lack any direct interpretation – or
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indeed, any basis in reality. An alternative approach is to try to build a
model whose structure reflects the actual data-generating mechanism. This
leads to structural time-series models, state-space models and the Kalman
filter; see V.5 below.
Interpretation of parameters.

Recall the ARMA(p, q) model

Xt =
∑p

i=1
φiXt−i + εt +

∑q

j=1
θjεt−j, (εt) WN(σ2). (∗)

Think, for example, of Xt as representing the value at time t of some partic-
ular economic/financial/business variable – the current price of a particular
company’s stock, or of some particular commodity, say. Think of εt as rep-
resenting the current value of some general indicator of the overall state of
the economy. We are trying to predict the value of the particular variable
Xt, given information of two kinds:
(i) on the past values of the X-process (particular information),
(ii) on the past and present values of the ε-process (general information).
Then (relatively) large values of a coefficient φi, or θj, indicate that this vari-
able – particular information at lag i, or general information at lag j – is
important in determining the variable Xt of interest. By contrast, a (rela-
tively) low value suggests that we may be able to discard this variable.

Another illustration, from geographical or climatic data rather than an
economic/financial setting, is in modelling of river flow, or depth. Here Xt

might be the depth of a particular river at time t; εt might be some general
indicator of recent rainfall in the area – e.g., precipitation at some weather
station in the river’s watershed.
The General Linear Process. An infinite-order MA process

Xt − µ =
∑∞

i=0
φiεt−i,

∑
φ2
i <∞, (εt) WN

is called a general linear process. Both AR and MA processes are special
cases, as we have seen. But since there are infinitely many parameters φi
in the above, the model is only useful in practice if it reduces to a finite-
dimensional model such as an AR(p),MA(q) or ARMA(p, q).

However, the general linear process is important theoretically, as we now
explain. Consider a stationary process (Xt) (the general linear process is
stationary), and write σ2 for the variance of Xt (rather than εt, as before).
Then σ2 measures the variability in Xt. Suppose now that we are given the
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values of Xs up to Xt−q. This knowledge makes Xt less variable, so

σ2
q := var(Xt| · · · , Xt−q−2, Xt−q−1, Xt−q) ≤ σ2.

As we increase q, the information given decreases (recedes further into the
past), so Xt given this information becomes more variable: σ2

q increases with
q. So

0 ≤ σ2
q ↑ σ2

∞ ≤ σ2 (q →∞).

One possibility is that σq = 0 for all q, and then σ∞ = 0 also. Now if
a random variable has zero variance, it is constant (with probability one) –
i.e., non-random or deterministic. The case σq ≡ 0 does occur, in cases such
as

Xt = a cos(ωt+ b),

where a, b, ω may be random variables, but do not depend on time. Then
three values of Xt are enough to find the three values a, b, ω, and then all
future values of Xt are completely determined. In this case, each Xt is a
random variable, but (Xt) as a stochastic process is clearly degenerate: there
is no ‘new randomness’, and the dependence of randomness on time – the
essence of a stochastic process (and even more, of a time series!) – is trivial.
Such a process is called singular or purely deterministic.

3. Wold decomposition; spectral methods; time domain and fre-
quency domain

At the other extreme to the deterministic case, we may have

σq ↑ σ∞ = σ (q →∞).

Then as information given recedes into the past, its influence dies away to
nothing – as it should. Such a process is called purely nondeterministic.

We quote the

Theorem (Wold Decomposition Theorem: Wold (1938)). A (strictly)
stationary stochastic process (Xt) possesses a unique decomposition

Xt = Yt + Zt,

where
(i) Yt is purely deterministic,
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(ii) Zt is purely nondeterministic,
(iii) Yt, Zt are uncorrelated,
(iv) Zt is a general linear process,

Zt =
∑

φiεt−i,

with the εt uncorrelated.

This result is due to the Swedish statistician Hermann WOLD (1908-
1992) in 1938. It shows that infinite moving-average representations

∑
φiεt−i,

far from being special, are general enough to handle the stationary case apart
from degeneracies such as purely deterministic processes. For proof, see e.g.
[D] J. L. DOOB (1953): Stochastic processes, Wiley (XII.4, Th. 4.2).

Corollary. If (Xt) has no purely deterministic component – so

Xt =
∑∞

i=0
ψiεt−i,

∑
ψ2
i <∞, (εt) WN(σ2) −−

then
(i) γk := cov(Xt, Xt+k) = σ2

∑∞
i=0ψiψi+k,

(ii) γk → 0, ρk := corr(Xt, Xt+k) → 0 (k → ∞): the autocovariance and
autocorrelation tend to zero as the lag k increases.

Proof.

γk = cov(Xt, Xt+k) = E(Xt, Xt+k) = E[(
∑∞

i=0
ψiεt−i)(

∑∞

j=0
ψjεt−k−j)]

=
∑∑

i,j
ψiψjE(εt−iεt−k−j).

Here E(.) = 0 unless i = j + k, when it is σ2, so

γk = σ2
∑

j=0
ψjψj+k,

proving (i). For (ii), use the Cauchy-Schwarz inequality:

|γk| = σ2|
∑∞

i=0
ψiψi+k| ≤ (

∑∞

i=0
ψ2
i )

1/2
∑∞

i=0
ψ2
i+k)

1/2 → 0 (k →∞),

as
∑
ψ2
i <∞, so

∑∞
i=kψ

2
i is the tail of a convergent series. //
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More general models. We mention a few generalisations here.
1. ARIMA(p, d, q). The ‘I’ here stands for ‘integrated’; the d for how many
times. Differencing d times (e.g. to give stationarity) gives ARMA(p, q).
2. SARIMA. Here ‘S’ is for ‘seasonal’: many economic time series have a
seasonal effect (e.g., agriculture, building, tourism).

Spectral methods; frequency domain.
The key to the Wold decomposition and related results is the Cramér

representation (Harald CRAMÉR (1893-1985) in 1942)

Xt =

∫ 2π

0

eitθdY (θ) (t ∈ Z)

for a process Y = (Y (θ) : θ ∈ [0, 2π)) on the unit circle T (‘T for torus’),
parametrised by θ ∈ [0, 2π), or R/2πZ. Thus X is the Fourier transform
(sequence of Fourier coefficients) of the random signed measure Y . Taking
E[Xt] = 0, var(Xt) = 1 for simplicity, the autocorrelation function r = (rt)
is given by

rt =

∫
e−itθdµ(θ),

where the spectral measure µ satisfies

E[|dY (θ)|2] = dµ(θ).

One can pass between the time domain – where one looks at the process
X = (Xt) in time, working on the L2-space L2(Ω) on the underlying proba-
bility space (Ω,F ,P) as in SP – and the frequency domain – where one looks
at frequencies θ, and works on the L2-space L2(µ) of the spectral measure µ
– via the Kolmogorov isomorphism

Xt ↔ eit. = (t 7→ eitθ, θ ∈ T) (t ∈ Z)

(A. N. KOLMOGOROV (1903-1987) in 1941). These L2-spaces are both
Hilbert spaces, and Hilbert-space methods play the crucial role here1.

1Hilbert space can be thought of as ‘Euclidean space of infinitely many dimensions’.
Its study belongs to Functional Analysis – roughly, analysis in infinitely many dimensions.
The familiar dot product, or inner product, of vectors in Euclidean space Rd extends to
the dot product of a Hilbert space. The two main examples are the function space L2, with
dot product (f, g) :=

∫
fḡ, and the sequence space `2, with dot product (a, b) :=

∑
anb̄n.
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Szegö’s theorem.
By Szegö’s theorem (Gabor SZEGÖ (1895-1985) in 1915), the determin-

istic component in the Wold decomposition is absent (the ‘nice case’) iff∫ 2π

0

logw(θ)dθ > −∞,

where w is the density of the spectral measure µ of the process (the logarithm
of the density enters here in connection with the concept of entropy, which
arises in Statistical Mechanics and Thermodynamics).
Hidden frequencies.

Spectral (or Fourier) methods are specially well adapted for searching
for hidden frequencies. They can be traced back to work of Lord Kelvin on
tides, and to work of Sir Arthur SCHUSTER (1851-1934) of 1897 and 1906
on sunspots (which show a periodicity of around 11 years). They are widely
used for detecting the chemical composition of stars from analysing the fre-
quencies found in starlight. An obviously relevant area for Math. Finance is
analysing the business cycle. Under normal economic conditions (pre-Crash
of 2007-8), economic life showed a natural rhythm, in which business ac-
tivity tended to increase, leading to expansion (and eventually overheating)
of the economy (employment increasing, and wages increasing as employers
competed for labour), followed by contraction (and eventually depression) of
the economy (employment and wages falling). The authorities would try to
control this by increasing interest rates to slow the economy down (making it
more expensive for firms to borrow to invest), and decreasing interest rates
to stimulate the economy. Note that this has not applied since the Crash: we
have had long periods of near-zero interest rates, combined with economic
depression. The Japanese had even worse experiences, in the 1990s and later
(the ‘lost decade’, or decades).
Wavelets.

One can combine time domain and frequency domain (‘time-frequency
analysis’) by using wavelets (1980s on)2; we must omit details.

4. ARCH and GARCH; Econometrics ([BF, 9.4.1, 220-222)
There are a number of stylised facts in mathematical finance. E.g.:

(i). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethal!)

2Wavelets are a speciality of the Statistics Section here at Imperial College
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(ii). Financial data have much fatter tails than the normal/Gaussian (I.5).
(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting. As investors are highly
sensitive to losses (see (i) above), downturns cause widespread nervousness,
which is reflected in higher volatility. The upshot is that good times are as-
sociated with periods of growth but low volatility; downturns spark extended
periods of high volatility (and stagnation, or shrinkage, of the economy).
ARCH and GARCH.

We turn to models that can incorporate such features (volatility cluster-
ing, etc.).

The model equations are (with Zt ind. N(0, 1))

Xt = σtZt, σ2
t = α0 +

p∑
1

αiX
2
i−1, (ARCH(p))

while in GARCH(p, q) the σ2
t term becomes

σ2
t = α0 +

p∑
1

αiX
2
i−1 +

q∑
1

βjσ
2
t−j. (GARCH(p, q))

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering – the common tendency for periods of high volatility, or
variability, to cluster together in time. See e.g. [BFK].
Integrated processes.

One standard technique used to reduce non-stationary processes to the
stationary case is to difference them repeatedly (one differencing operation
replaces Xt by Xt −Xt−1). If the series of dth differences in stationary but
that of (d− 1)th differences is not, the original series is said to be integrated
of order d; one writes (Xt) ∼ I(d).
Co-integration.

If (Xt) ∼ I(d), we say that (Xt) is cointegrated with cointegration vector
α if αTXt) is (integrated of) order less than d.

A simple example arises in random walks. If Xn =
∑n

i=1 ξi with ξi
iid random variables, Yn = Xn + εn is a noisy observation of Xn, then
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(X, Y ) = (Xn, Yn) is cointegrated of order 1, with coint. vector (−1, 1)T .
Cointegrated series are series that move together, and commonly occur in

economics. These concepts arose in econometrics, in the work of R. F. EN-
GLE (1942-) and C. W. J. (Sir Clive) GRANGER (1934-2009) in 1987. Engle
and Granger gave (in 1991) an illustrative example – the price of tomatoes
in North Carolina and South Carolina. These states are close enough for a
significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
demand would move the prices towards each other.

Engle and Granger received the Nobel Prize in Economics in 2003. The
citation included the following: ”Most macroecomomic time series follow a
stochastic trend, so that a temporary disturbance in, say, GDP has a long-
lasting effect. These time-series are called non-stationary; they differ from
stationary series which do not grow over time, but fluctuate around a given
value. Clive Granger demonstrated that the statistical methods used for sta-
tionary time series could yield wholly misleading results when applied to the
analysis of nonstationary data. His significant discovery was that specific
combinations of nonstationary time series may exhibit stationarity, thereby
allowing for correct statistical inference. Granger called this phenomenon
cointegration. He developed methods that have become invaluable in sys-
tems where short-run dynamics are affected by large random disturbances
and long-run dynamics are restricted to economic equilibrium relationships.
Examples include the relations between wealth and consumption, exchange
rates and price levels, and short- and long-term interest rates.”
Spurious regression.

Standard least-squares method work perfectly well if they are applied to
stationary time series. But if they are applied to non-stationary time series,
they can lead to spurious or nonsensical results. One can give examples of
two time series that clearly have nothing to do with each other, because they
come from quite unrelated contexts, but nevertheless have a high value of
R2. This would normally suggest that a correspondingly high propertion
of the variability in one is accounted for by variability in the other – while
in fact none of the variability is accounted for. This is the phenomenon of
spurious regression, first identified by G. U. YULE (1871-1851) in 1927, and
later studied by Granger and Newbold in 1974. We can largely avoid such
pitfalls by restricting attention to stationary time series, as above.

From Granger’s obituary (The Times, 1.6.2009): ”Following Granger’s
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arrival at UCSD in La Jolla, he began the work with his colleague Robert F.
Engle for which he is most famous, and for which they received the Bank of
Sweden Nobel Memorial Prize in Economic Sciences in 2003. They developed
in 1987 the concept of cointegration. Cointegrated series are series that tend
to move together, and commonly occur in economics. Engle and Granger
gave the example of the price of tomatoes in North and South Carolina ....
Cointegration may be used to reduce non-stationary situations to stationary
ones, which are much easier to handle statistically and so to make predictions
for. This is a matter of great economic importance, as most macroeconomic
time series are non-stationary, so temporary disturbances in, say, GDP may
have a long-lasting effect, and so a permanent economic cost. The Engle-
Granger approach helps to separate out short-term effects, which are random
and unpredictable, from long-term effects, which reflect the underlying eco-
nomics. This is invaluable for macroeconomic policy formulation, on matters
such as interest rates, exchange rates, and the relationship between incomes
and consumption.”
Endogenous and exogenous variables.

The term ‘endogenous’ means ‘generated within’. TheARCH andGARCH
models above show how variable variance (or volatility) can arise in such a
way. By contrast, ‘exogenous’ means ‘generated outside’. Exogenous vari-
ables might be the effect in a national economy of international factors, or
of the national economy on a specific firm or industrial sector, for example.
Often, one has a vector autoregressive (VAR) model, where the vector of
variables is partitioned into two components, representing the endogenous
and exogenous variables. For monograph treatments in the econometric set-
ting, see e.g. [G], [GM].
Discrete and continuous time.

While econometric data arrives discretely (monthly trade figures, daily
closing prices for stocks, etc.), continuous time is more convenient for dy-
namic models of the economy. See e.g.
A. R. BERGSTROM: Continuous-time econometric modelling, OUP, 1990.

5. State-space models and the Kalman filter
State-space models originate in Control Engineering. This field goes back

to the governor on a steam engine (James WATT (1736-1819) in 1788): to
prevent a locomotive going too fast, the governor (a rotating device mounted
on top of the engine) rose under centrifugal force as the speed increased, thus
operating a valve to reduce the steam entering the cylinders. This was an
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early form of feedback control.
The Kalman filter (Rudolf KALMAN (1930-2016) in 1960) was a de-

vice for online (or real-time) control, suitable for use with linear systems,
quadratic loss and Gaussian errors (LQG) (the term filter is used because
one ‘filters out’ the noise from the signal to reveal the best estimate of the
state). This appeared just when it was needed, for online control of manned
spacecraft during the 60s. We shall not develop the control aspects here; see
e.g.
M. H. A. DAVIS, Linear estimation and stochastic control, Chapman & Hall,
1977,
M. H. A. DAVIS & R. B. VINTER, Stochastic modelling and control, Chap-
man & Hall, 1985.
But the power of the method even without control can be seen in applications
such as to mortar-locating radar3. We follow Whittle ([W], Th. 12.5.2); cf.
[BD1] Ch. 12, [BD2] Ch. 8.

The Kalman filter has been extensively applied in Time Series, financial
and otherwise; see e.g.
[H] A. C. HARVEY, Forecasting, structural time series models and the
Kalman filter, CUP, 1991.

Before proceeding to technicalities, we stress one great advantage of the
Kalman filter and state-space methods: they do not depend on stationarity.
Most processes encountered in economics and finance – and indeed, in life
generally – are not stationary. One can induce stationarity by two main
methods: differencing (as in the Box-Jenkins ARMA/ARIMA approach –
rather brutal), or discounting (as in the Black-Scholes approach to option
pricing, to get the EMM – but interest rates vary!). State-space models are
more direct.

With the engineering example in mind for definiteness, suppose that the
state of the system at time n is represented by some p-vector x(n). Although
the state x is what we are interested in, we cannot observe it directly; what
we can observe is a signal, or output y, y(n) at time n say, a q-vector. We ap-
ply a control u(n−1), based on information Fn−1 available at time n−1. The
dynamics are represented by the following two equations, the state equation
(SE) and the observation equation (OE):

x(n) = A(n− 1)x(n− 1) +B(n− 1)u(n− 1)ε(n− 1), (SE)

3Used in, e.g., the Siege of Sarajevo, 1992-96.
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y(n) = C(n)x(n) + η(n). (OE)

Here A(.), B(.), C(.) are known matrices. The errors ε(.), η(.) are p- and
q-vectors respectively, with means 0; the errors at different times are all
uncorrelated (= independent, if the errors are Gaussian, as we may assume
here); the covariance matrices are known matrices

cov(ε(n)) = N(n), cov(η(n)) = M(n), cov(ε(n), η(n)) = L(n),

In the motivating trajectory example, A(.) comes from the dynamics of the
vehicle being tracked, C(.) from the properties of the tracking equipment,
B(.) from the control mechanism.

For simplicity, we restrict to the case where A(n) = A for all n, and sim-
ilarly for B and C; there is no difficulty in extending to the general case.

We write x̂(n) for the best linear predictor (in the sense of minimising ex-
pected squared error) of x(n) given the information F(n) available at time n.

Theorem (Kalman filter).
(i) The conditional distribution of x(n) given F(n) is N(x̂(n), V (n)), where
the estimate x̂(n) is given by Kalman filter in (ii) below and the covariance
matrix V (n) is given by the Kalman recursion in (iii) below.
(ii) (Kalman filter). The estimate x̂(n) is given by the recursion (updating
relation)

x̂(n) = Ax̂(n− 1) +Bu(n− 1) +H(n)(y(n)− Cx̂(n− 1)),

where
H(n) := (L+ AV (n− 1)CT )(M + CV (n− 1)CT )−1.

(iii) (Kalman recursion). The covariance matrix V (n) is given by the recur-
sion (updating relation)

V (n) = N+AV (n−1)AT−(L+AV (n−1)CT )(M+CV (n−1)CT )−1(LT+CV (n−1)AT ).

Proof. (i) We start with x(0) ∼ N(x̂(0), V (0)). That x(n)|F(n) ∼ N(x̂(n), V (n))
is clear from the Gaussian Regression Formula of IV.6 on conditioning and
regression for the multinormal, and is also proved by induction from the re-
cursions (ii), (iii) below.

Write the estimation error as ∆(n) := x(n)−x̂(n); then V (n) = cov(∆(n)).
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Now

∆(n− 1) = x(n− 1)− x̂(n− 1)

ε(n− 1) = x(n)− Ax(n− 1)−Bu(n− 1)

η(n) = y(n)− Cx(n− 1)

are jointly normal with mean 0 and covariance matrix V 0 0
0 N L
0 LT M

 ,

where for convenience we write V for V (n − 1). We now replace x(n − 1)
(unobservable) by x̂(n − 1) + ∆(n − 1) (we know the first, and know the
covariance V of the second), and define

ζ∗(n) := x(n)− Ax̂(n− 1)−Bu(n− 1)

= x(n)− Ax(n− 1)−Bu(n− 1) + A(x(n− 1)− x̂(n− 1))

= ε(n) + A∆(n− 1),

ζ(n) := y(n)− Cx̂(n− 1)

= y(n)− Cx(n− 1) + C(x(n− 1)− x̂(n− 1))

= η(n) + C∆(n− 1).

Then(
ζ∗(n)
ζ(n)

)
=

(
A∆(n− 1) + ε(n)
C∆(n− 1) + η(n)

)
=

(
A 1 0
C 0 1

) ∆(n− 1)
ε(n)
η(n)

 ∼ N(0,Σ),

where the covariance matrix Σ is given by

Σ =

(
A 1 0
C 0 1

) V 0 0
0 N L
0 LT M

 AT CT

1 0
0 1

 =

(
A 1 0
C 0 1

) V AT V CT

N L
LT M

 :

Σ =

(
N + AV AT L+ AV CT

LT + CV AT M + CV CT

)
.
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Both (ii) (conditional means) and (iii) (conditional variances) now follow
from the Gaussian Regression Formula of IV.6, W4. //

It is difficult to overestimate the practical importance of this key result.
It has proved invaluable in many areas since its introduction in 1960.

Extensions.
1. Non-Gaussian errors.

The result extends beyond the context of Gaussian errors (multivariate
normal distribution) above. One does not obtain the full distribution, but
works instead with means and variances. See e.g. Whittle [W], 12.8 and Th.
12.9.4; see also the Bayes linear estimate (SMF1415, VII.7.8 D19).
2. Prediction further into the future.

The method above can be readily adapted to prediction k time-steps into
the future. This is done in detail in [BD2], 12.3.
3. Smoothing.

Instead of predicting the future, one can instead seek to get the best fit
we can to the data. The mathematics is very similar; see e.g. [BD2], Prop.
12.2,3, 4.
4. Riccati equation.

The non-linear recursion (iii) is a matrix Riccati equation, and this name
is often used instead of Kalman recursion.
5. Off-line calibration.

To use a Kalman filter, one needs the relevant matrices, A,B,C, L,M,N .
In practice, these will have to be estimated numerically. This can be done
off-line, ‘at leisure’. Once accurate (enough) numerical estimates of these
matrices are known, and the recursions (ii) and (iii) programmed, the filter
can be used online (in real time).
6. Innovations.

The innovations are I(n) := y(n)− Cx̂(n− 1). These are the differences
between an observation y(n) and the prediction Cx̂(n − 1) we would have
made for it at time n− 1 (from the observation equation (OE)). This is the
new information at time n – beyond what we could have predicted. They
are mutually uncorrelated (independent, in the Gaussian case, as here). One
can base the theory on them ([W], 12.7).
7. Continuous time.

One can work instead in continuous time, where the recurrence (or dif-
ference) equations above are replaced by differential equations. See e.g. [W],
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Ch. 20. Hence the name Riccati – Riccati’s differential equation.
8. Hilbert-space methods.

The prediction above is done in the least-squares sense – to minimise the
expected squared errors. This has a nice geometrical interpretation in terms
of projections (see e.g. [BF], Ch. 4). In our finite-dimensional setting, this
just involves Euclidean geometry, but the method works just as well in in-
finitely many dimensions – Hilbert space (‘Euclidean space of infinitely many
dimensions’ – see V.9).
9. Nonlinear systems.

The Kalman filter is linear, and (as linearity and Gaussianity are so
closely linked) works very well in the Gaussian case. However, in practice
one encounters non-linear systems (and non-Gaussian errors). The extended
Kalman filter reduces to the linear case by linearisation. This works well in
some applications (such as GPS – geographic positioning systems). But it
does not always give good results – for example, it may not be numerically
stable. Also, to implement it one needs computer-intensive methods such as
MCMC (Markov chain Monte Carlo), particle filters etc.4

10. Financial applications.
The Kalman filter has been extensively applied in finance (e.g., for cali-

bration of interest-rate models). For background, see e.g.
C. WELLS, The Kalman filter in finance, Springer, 1996;
11. State-space models for time series.

The Kalman filter, and state-space models generally, have also been ex-
tensively used in Time Series; see e.g. Harvey [H] above, and
J. DURBIN & S. KOOPMAN, Time series analysis by state-space methods,
OUP, 2001.
12. Change-point detection.

One important application is in automatic control of industrial produc-
tion. If a machine in use begins to deteriorate, or deviate from its required
performance level (for lack of maintenance, etc.), it is important to be able
to detect this as quickly as possible. Such quick-detection problems are an
important area of application of the Kalman filter and its relatives.
13. Control.

For further background on Control Theory, see e.g.
M. H. A. DAVIS, Linear estimation and stochastic control, Chapman & Hall,

4MCMC and particle filters are specialities of the Imperial College Mathematics De-
partment, and Professor Dan Crisan.
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1977,
M. H. A. DAVIS & R. B. VINTER, Stochastic modelling and control, Chap-
man & Hall, 1985.
Professor M. H. A. (Mark) Davis (1945-) was the founding Professor of Math-
ematical Finance at Imperial College, and set up this MSc in 2000.

§6. The Yule-Walker equations.

Recall the model for AR(p):

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt, (∗)

with (εt) WN as before.
Multiply (∗) through byXt−k and take expectations. SinceE[Xt−kXt−i] =

ρ(|k − i|) = ρ(k − i), this gives

ρ(k) = φ1ρ(k − 1) + · · ·+ φpρ(k − p) (k > 0). (YW )

These are the Yule-Walker equations, due to G. Udny YULE (1871-1951) in
1926 and Sir Gilbert WALKER (1868-1958) in 1931.

The Yule-Walker equations (YW) have the form of a difference equation
of order p. The characteristic polynomial of this difference equation is

λp − φ1λ
p−1 − · · · − φp = 0,

which by above is
φ(1/λ) = 0.

If the roots are λ1, · · · , λp, the trial solution ρ(k) = λk is a solution iff λ is
one of the roots λi. Since the equation is linear,

ρ(k) = c1λ
k
1 + · · ·+ cpλ

k
p

(for k ≥ 0, and use ρ(−k) = ρ(k) for k < 0) is a solution for all choices of
constants c1, · · · , cp. This is the general solution of (YW) if all the roots λi
are distinct, with appropriate modifications for repeated roots (if λ1 = λ2,
use c1λ

k
1 + c2kλ

k
1, etc.).

Now |ρ(k)| ≤ 1 for all k (as ρ(.) is a correlation coefficient), and this is
only possible if

|λi| ≤ 1 (i = 1, · · · , p)
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– that is, all the roots lie inside (or on) the unit circle. This happens (as our
polynomial is φ(1/λ)) if and only if all the roots of the polynomial φ(λ) lie
outside (or on) the unit circle. Then |ρ(k)| ≤ 1 for all k, and when there are
no roots of unit modulus, also ρ(k) → 0 as k → ∞ – that is, the influence
of the remote past tends to zero, as it should. This is also the condition for
the AR(p) process above to be stationary.

The remote past.
In some physical systems, the influence of the remote past does indeed

become negligible. Example: bathwater – when we run a bath, the detailed
thermal history is forgotten, as the hot and cold water thermalise when they
mix. Sometimes it does not. Example: tempered steel – here the detailed
thermal history is locked in by the tempering process, and is what gives
tempered steel its special qualities.
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