
smfw6 Week 6: 21 & 23.2.2017

VI: NON-PARAMETRIC STATISTICS

1. Empiricals; the Glivenko-Cantelli theorem

The first thing to note about Parametric Statistics is that the parametric
model we choose will only ever be approximately right at best. We recall
Box’s Dictum (the English statistician George E. P. BOX (1919 – 2013)): all
models are wrong – some models are useful. For example: much of Statistics
uses a normal model in one form or other. But no real population will ever
be exactly normal. And even if it were, when we sampled from it, we would
destroy normality, e.g. by the need to round data to record it; rounded data
is necessarily rational, but a normal distribution takes irrational values a.s.

So we avoid choosing a parametric model, and ask what can be done with-
out it. We sample from an unknown population distribution F . One impor-
tant tool is the empirical (distribution function) Fn of the sample X1, . . . , Xn.
This is the (random!) probability distribution with mass 1/n at each of the
data points Xi. Writing δc for the Dirac distribution at c – the probability
measure with mass 1 at c, or distribution function of the constant c –

Fn :=
1

n

n∑
1

δXi
.

The next result is sometimes called the Fundamental Theorem of Statistics.
It says that, in the limit, we can recover the population distribution from
the sample: the sample determines the population in the limit. It is due to
V. I. GLIVENKO (1897-1940) and F. P. CANTELLI (1906-1985), both in
1933, and is a uniform version of Kolmogorov’s Strong Law of Large Num-
bers (SLLN, or just LLN), also of 1933.

Theorem (Glivenko-Cantelli Theorem, 1933).

sup
x
|Fn(x)− F (x)| → 0 (n→∞) a.s.

Proof. Think of obtaining a value ≤ x as Bernoulli trials, with parameter (=
success probability) p := P (X ≤ x) = F (x). So by SLLN, for each fixed x,

Fn(x)→ F (x) a.s.,
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as Fn(x) is the proportion of successes. So it remains to prove that this holds
uniformly in x.

Now fix a finite partition −∞ = x1 < x2 < . . . < xm = +∞. By
monotonicity of F and Fn,

sup
x
|Fn(x)− F (x)| ≤ max

k
|Fn(xk)− F (xk)|+ max

k
|F (xk+1 − F (xk)|

(check). Letting n→∞ and refining the partition indefinitely, we get

lim supn sup
x
|Fn(x)− F (x)| ≤ sup

x
∆F (x) a.s.,

where ∆F (x) denotes the jump of F (if any – there are at most countably
many jumps!) at x. This proves the result when F is continuous.

In the general case, we use the Probability Integral Transformation (PIT,
IS, I). Let U1, . . . , Un . . . be iid uniforms, Un ∼ U(0, 1). Let Yn := g(Un),
where g(t) := sup{x : F (x) < t}. By PIT, Yn ≤ x iff Un ≤ F (x), so the Yn
are iid with law F , like the Xn, so wlog take Yn = Xn. Writing Gn for the
empiricals of the Un,

Fn = Gn(F ).

Writing A for the range (set of values) of F ,

sup
x
|Fn(x)− F (x)| = sup

t∈A
|Gn(t)− t| ≤ sup

[0,1]

|Gn(t)− t|,→ 0 a.s.,

by the result (proved above) for the continuous case. //

If F is continuous, then the argument above shows that

∆n := sup
x
|Fn(x)− F (x)|

is independent of F , in which case we may take F = U(0, 1), and then

∆n = sup
t∈(0,1)

|Fn(t)− t|.

Here ∆n is the Kolmogorov-Smirnov (KS) statistic, which by above is distribution-
free if F is continuous. It turns out that there is a uniform CLT corresponding
to the uniform LLN given by the Glivenko-Cantelli Theorem: ∆n → 0 at rate√
n. The limit distribution is known – the Kolmogorov-Smirnov distribution

1− 2
∞∑
1

(−)k+1e−2k
2x2

(x ≥ 0).
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It turns out also that, although this result is a limit theorem for random vari-
ables, it follows as a special case of a limit theorem for stochastic processes.
Writing B for Brownian motion, B0 for the Brownian bridge

B0(t) := B(t)− tB(1), t ∈ [0, 1],

one has
Zn :=

√
n(Gn(t)− t)→ B0(t), t ∈ [0, 1].

(B0 is called the Brownian bridge, as B0(0) = 0 and B0(1) = 0, so B0 gives
a (Brownian) bridge betwen the points (0, 0) and (0, 1).) This is Donsker’s
Theorem: Monroe D. DONSKER (1925-1991) in 1951 – originally, the Erdös-
Kac-Donsker Invariance Principle. The relevant mathematics here is weak
convergence of probability measures (under an appropriate topology). Thus,
the KS distribution is that of the supremum of Brownian bridge. For back-
ground, see e.g. Kallenberg Ch. 14.

Higher dimensions.
In one dimension, the half-lines (−∞, x] form the obvious class of sets to

use – e.g., by differencing they give us the half-open intervals (a, b], and we
know from Measure Theory that these suffice. In higher dimensions, obvi-
ous analogues are the half-spaces, orthants (sets of the form

∏n
k=1(−∞, xk]),

etc. – the geometry of Euclidean space is much richer in higher dimensions.
We call a class of sets a Glivenko-Cantelli class if a uniform LLN holds for
it, a Donsder class if a uniform CLT holds for it. For background, see e.g.
[vdVW]. This book also contains a good treatment of the delta method in
this context – the von Mises calculus (Richard von MISES (1883-1953), or
infinite-dimensional delta method.

Variants on the problem above include:
1. The two-sample Kolmogorov-Smirnov test.

Given two populations, with unknown distributions F , G, we wish to test
whether they are the same, on the basis of empiricals Fn, Gm.
2. Kolmogorov-Smirnov tests with parameters estimated from the data.

A common case here is testing for normality. In one dimension, our hy-
pothesis of interest is whether or not F ∈ {N(µ, σ2) : µ ∈ R, σ > 0}. Here
(µ, σ) are nuisance parameters: they occur in the formulation of the problem,
but not in the hypothesis of interest.
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Although the Glivenko-Cantelli Theorem is useful, it does not tell us, say,
whether the law F is absolutely continuous, discrete etc. For (with distance
between two probability distributions measured in any reasonable sense, e.g.
by the Lévy metric), there are discrete G arbitrarily close to an abs. cts F
(discretise), and abs. cts F arbitrarily close to a discrete F (by smooth ap-
proximation to F at its jump points). So sampling alone cannot tell us what
type of law F is. So we have to choose what kind of population distribution
to assume. Often this will have a density f ; we have to assume how smooth
to take f . This leads on to density estimation, below.

2. Curve and surface fitting.

We begin with some background. Suppose we have n points (xi, yi), with
the xi distinct, and we wish to interpolate them – find a function f with
f(xi) = yi, i = 1, . . . , n. One can of course do this by linear interpolation
between each adjacent pair of points, obtaining a continuous piecewise-linear
function – but this is not smooth enough for many purposes. One might
guess that as a polynomial of degree n− 1 contains n degrees of freedom (its
n coefficients), it might be possible to interpolate by such a polynomial, and
this is indeed so (Lagrangian interpolation, or Newtonian divided-difference
interpolation). There is a whole subject here – the Calculus of Finite Differ-
ences (the discrete analogue of the ordinary (‘infinitesimal’) calculus).

The degree n may be large (should be large – the more data, the better).
But, polynomials of large degree are very oscillatory and numerically unsta-
ble. We should and do avoid them. One way to do this is to use splines.
These are continuous functions, which are polynomials of some chosen low
degree (cubic splines are the usual choice in Statistics) between certain spe-
cial points, called knots (or nodes), across which the function and as many
derivatives as possible are continuous. So a cubic spline is piecewise cubic;
it and its first two derivatives continuous are across the knots.

Another relevant piece of background is the histogram, familiar from el-
ementary Statistics courses. One represents discrete data diagrammatically,
with vertical bars showing how many data points fall in each subinterval.

Computer implementation is necessary to use methods of this kind in
practice. For a general account using the computer language S (from which
R – free, like (La)TeX, and the proprietary package S-Plus, are derived), see
e.g. [VR], 5.6.
Note. By far the best choice of a general programming language for use with
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statistical data is R nowadays.

Roughness penalty.
Using polynomials of high degree, we can fit the data exactly. But we

don’t, because the resulting function would be too rough (‘too wiggly’). It
is better to fit the data approximately rather than exactly, but obtain a
nice smooth function at the end. One way to formalise this (due to I. J.
GOOD (1916-2009) and his pupil R. A. Gaskins in 1971) is to use a rough-
ness penalty – to measure the roughness of the function by some integrated
measure –

∫
(f ′′)2 is the usual one for use with cubic splines – and minimise

a combination of this and the relevant sum of squares (see IV, [BF] 9.2):

min
n∑
1

(yi − f(xi))
2 + λ2

∫
(f ′′)2.

Here λ2 is the smoothing parameter. It is under the control of the statistician,
who can choose how much weight to give to goodness of fit (the first term)
and how much to smoothness/roughness (the second term).

Although the minimisation above is over an infinite-dimensional space,
there is a unique finite-dimensional minimiser, the cubic spline with knots at
the data points. The minimising value and the fitted values are derived in,
e.g., [BF, §9.2]; cf. [LX, §7.2.4].

1. Density estimation.
Suppose we want to find as good a fit to the data as possible using a

density function with smoothness properties that we have chosen (see above).
One way to do this is to make two key choices:
(a) the kernelK(.). This is a density with the required smoothness properties;
(b) the bandwidth h > 0 (also called the window width).
One then defines the kernel density estimator

f̂(x) :=
1

nh

n∑
1

K
(x−Xi)

h

)
.

This is again a density, with the same smoothness properties as K. It turns
out that the properties of f̂ are mainly determined by h, and the choice of K
is less important. We must refer for detail here to e.g. [Sil], which contains
graphics, comparing kernel density estimates with histograms of the data.
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Silverman’s book (4.2.3 Scatter plots, p. 81-83, Figs 4.6 – 4.8) contains a
contour plot of the two-dimensional density of a clinical measurement in the
treatment of a disease. Fig. 4.7 reveals that the contour plot is bimodal – has
two peaks (this will be familiar to those of you with map-reading experience
in hilly country, and is visually clear anyway). This suggested – correctly –
that there were in fact two different sub-populations present. Two different
types of this disease were identified, and different treatments developed for
them – a good example of an unexpected benefit from density estimation.

One can see similar effects more easily, in one dimension. If a histogram
of adult heights were plotted, it would again be bimodal. The reason is ob-
vious: males are statistically taller than females. So here sex, or gender, is a
relevant factor (recall that we met factor analysis briefly in III.3, III.5).

A less obvious example arises in teaching UK undergraduate mathematics
students. Again, exam scores after one year are bimodal. This reflects the
still-visible effects of having some students with single maths at A Level and
some with double maths. This difference is much less marked in later years.

The statistical moral here is clear. Bi- or multi-modality of a population
suggests that the population is heterogeneous. We should seek to identify
relevant factors1 causing this heterogeneity, disaggregate accordingly, and
analyse the sub-populations separately. Otherwise the aspect we wish to
study becomes entangled with (confounded with) these factors.

2. Non-parametric regression.
This extends and complements the parametric regression in Ch. IV. One

can extend this to a non-parametric setting, using roughness penalties, cubic
splines etc.; see e.g. [BF], 9.2.

3. Semi-parametric regression.
This combines Ch. IV and VI: see e.g.

D. RUPPERT, M. P. WAND & R. J. CARROLL: Semi-parametric regression
during 2003-07. Electronic J. Statistics 3 (2009), 1193-1256 [free, online], +
refs there, and book Semi-parametric regression (same authors, CUP, 2003).

4. Volatility surfaces.
The volatility σ in the Black-Scholes formula is unknown, and has to be

estimated – either as historic volatility from time-series data (Ch. V), or as

1There is a whole subject, Factor Analysis – see [MKB], [K].
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implied volatility – the Black-Scholes price is (continuous and) increasing in σ
(‘options like volatility’), so one can infer ‘what the market thinks σ is’ from
the prices at which options currently trade. Closer examination reveals that
the volatility is not constant, but varies – e.g., with the strike price (‘volatil-
ity smiles’). Volatility is observed to vary so unpredictably that it makes
sense to model is as a stochastic process (stochastic volatility, SV). Market
data is discrete, but for visual effect it is better to use computer graphics
and a continuous representation of such volatility surfaces. For a monograph
treatment, see Gatheral [Gat].
Note. Because of the asymmetry between profit and loss, one often encoun-
ters skewness in financial data. In the context of the volatility smile, one
obtains a skew smile, known as the volatility smirk2.

The VIX – volatility index (colloquially called the ‘fear index’) is widely
used, and is the underlying for volatility derivatives. It has even affected
literature (see e.g. John Harris’ novel The fear index, Hutchinson, 2011).

5. Stochastic volatility and state-space models.
Compare with V.5. In each, one has a coupled set of equations (difference

equations in discrete time, differential equations in continuous time). The
state variable plays the role of the volatility – both unobserved.

6. Image enhancement.
Images (of faces, moonscapes etc.) are typically corrupted by ‘noise’.

When these are digitised, into pixels, techniques such as the Gibbs sampler
(VI.4, VII.6) can improve quality, by iterations in which a pixel is changed
to improve agreement with ‘a consensus of neighbours’.

3. Non-parametric likelihood

At first glance, ‘non-parametric likelihood’ seems a contradiction in terms
(an oxymoron – ‘square circle’, etc.) But it turns out that maximum-
likelihood estimation (MLE) can indeed be usefully combined with non-
parametrics. First, we interpret the empirical Fn as a non-parametric MLE
(NPMLE) for the unknown true distribution F . For, if the data is {x1, . . . , xn},
the likelihood of F is L(F ) :=

∏n
1∆F (xi) (where ∆F (x) := F (x)− F (x−) is

2A smirk is a smile one is ashamed of, and this negative feeling is often betrayed by a
visible asymmetry.
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the probability mass on x), F ({x})). It makes sense to restrict attention to
distributions F with support in {x1, . . . , xn}, that is, absolutely continuous
wrt the empirical Fn: F << Fn, and Fn does indeed maximise the likelihood
over these F (Kiefer & Wolfowitz, 1956). Then it makes sense to call T (Fn)
a NPMLE for T (F ), where T is some functional – the mean, for example.

Let X,X1, . . . , Xn . . . be iid random p-vectors, with mean EX = µ and
covariance matrix Σ of rank q. In higher dimensions, the distribution func-
tion, P (. ≤ .), which leads to confidence intervals, is replaced by P (. ∈ .),
which leads to confidence regions (which covers the unknown parameter with
some probability); convexity is a desirable property of such confidence re-
gions. For r ∈ (0, 1), let

Cr,n := {
∫
XdF : F << Fn, L(F )/L(Fn) ≥ r}.

Then Cr,n is a convex set, and

P (µ ∈ Cr,n)→ P (χ2(q) ≤ −2 log r) (n→∞)

(the rate is O(1/
√
n) if E[‖X‖4] < ∞). This is a non-parametric analogue

of Wilks’ Theorem (II.3 above) (A. Owen 1990; P. Hall 1990):

−2 logLR ∼ χ2(q).

For a monograph account, see Owen [O].
In view of results of this type, it is common practice, when we want the

distribution of T (F ) when F is unknown, to use T (Fn) as an approximation
for it. This is commonly known as a plug-in estimator (just plug it in as an
approximation when we need the exact answer but do not know it); ‘empir-
ical estimator’, or ‘NPMLE’, would also be reasonable names.

Suppose we want to estimate an unknown density f , which is known to
be decreasing on [0,∞) (example: the exponential). A density is the deriva-
tive of a distribution; a concave function has a decreasing derivative (when
differentiable). The NPMLE fn of such a density is the (left-hand) derivative
of the least concave majorant of Fn (Grenander, 1956). This example is inter-
esting in that a CLT is known for it, but with an unusual rate of convergence
– cube-root asymptotics (Kim and Pollard 1990):

n1/3(fn(t)− f(t))→ |4f ′(t)f(t)|1/3argmaxh(B(h)− h2),
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with B BM and argmax the argument where the maximum is attained .

Semi-parametrics.
Consider the elliptical model, with multidimensional density

f(x) = const.g(Q(x)), Q(x) = (x− µ)TΣ−1(x− µ).

Here g : R+ → R+ is a function, the density generator, to be estimated. This
is the non-parametric part of the model; (µ,Σ) is as above, the parametric
part of the model. The model as a whole is then called semi-parametric.

Such models are very suited to financial applications. Notice how they
generalise the multivariate normal or Gaussian (recall Edgeworth’s theorem
of IV.3). The parametric part (µ,Σ) is clearly needed in financial modelling,
because of Markowitz’s work on risk (Σ) and return (µ), and diversification
(Σ again) (I.5, W2). The non-parametric part g allows us to choose a g that
reflects the tail-behaviour observed in the data. For instance, for financial
return data, it turns out that the return interval, ∆ is crucial.
a. Long (macro).

For ∆ long (monthly returns, say – though the rule of thumb is that

16 trading days suffice), the Gaussian (g(x) = e−
1
2
x) suffices. This is an

instance of aggregational Gaussianity – in other words, the Central Limit
Theorem (CLT – see e.g. SP).
b. Intermediate (meso).

For intermediate ∆ – daily returns, say – the generalised hyperbolic (GH)
distributions have been found to fit well.
c. Short (micro).

For short ∆ – high-frequency data (tick data), g decreasing like a power
(Pareto tails, or heavy tails – e.g. Student t) is both observed and predicted
theoretically (the renormalisation group in Physics).

These models have been extensively studied; see e.g. [BKRW], and [BFK]
for some applications. In some cases, ignorance of one part of the model im-
poses no loss of efficiency when estimating the other part. This is the case for
the elliptic model above, essentially for reasons to do with invariance under
the action of the affine group. See [BKRW], 4.2.3, 6.3.9, 7.2.4, 7.8.3 for the
theory, [BFK] for some applications.
Note. For Gaussian returns (say, monthly data), the density decreases ex-
tremely rapidly (far more so than is observed in practice!); the log-density
decreases quadratically. In the generalised hyperbolic case (say, daily data),
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the log-density decreases only linearly (recall that a hyperbola approaches
linear asymptotes). In the high-frequency case (say, tick data), the density
decays like a power (say, like Student t).

Note that it is sensible to think in terms of returns, rather than prices
or log-prices – but that this commits us to think also in terms of the return
interval. But this is a sensible discipline, in the financial world.

4. Limit theorems; Markov chains; MCMC

We quote (see e.g. SP, PfS):
1. Strong Law of Large Numbers (SLLN): if X1, X2, . . . are independent and
identically distributed (iid), with each Xn, X ∼ F , then

1

n

n∑
1

Xi → E[X] = µ :=

∫
xdF (x) (n→∞) a.s.

This includes as a special case the Weak Law of Large Numbers (WLLN),
with convergence in probability in place of convergence a.s.
2. Central Limit Theorem (CLT). If also the Xn have variance σ2 <∞, then

1

σ
√
n

n∑
1

(Xi − µ)→ N(0, 1) (n→∞) in distribution.

So if f is such that f(Xn) also has (finite) mean and variance, then

1

n

n∑
1

f(Xi)→ E[f(X)] a.s.;
1√

n var X

n∑
1

(f(Xi)−E[f(X)])→ N(0, 1).

The mode of convergence here is convergence in distribution, also known as
weak convergence. This is weaker than convergence in probability, but when
the limit is a constant (as in WLLN), the two are equivalent.

The convergence in the Glivenko-Cantelli theorem is uniform a.s., which
is very strong. Similarly for weak convergence: for bounded continuous f ,∫

fdFn →
∫
fdF :

1

n

n∑
1

f(Xi)→ E[f(X)] a.s.,

as above. The CLT above follows similarly from Donsker’s theorem.
All this can be generalised far beyond the setting above of the iid case.
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We can work with Markov chains (see e.g. PfS VII) (discrete time will suf-
fice for us, but the theory can be developed in continuous time). In PfS VII
Markov chains are developed for discrete state spaces (finite or countably
infinite). The definition of the Markov property is that, for predicting the
future, knowing where one is at the present is all that matters – if we know
where we are, how we got there is irrelevant. This irrelevance of the past
suggests that as time passes the past ‘becomes forgotten’, and the chain set-
tles down to some sort of steady state or equilibrium distribution, π – even
to a limit distribution π in favourable cases. Some Markov chains have no
limit distribution (e.g., the trivial chain on the integers, which just moves 1
to the right at each step). But many Markov chains do have an equilibrium
distribution, and even (if periodicity complications are absent) a limit distri-
bution. See e.g. PfS VII for details. In particular, we need the idea of detailed
balance (DB). A Markov chain with transition probability matrix P = (pij)
and limiting distribution π = πi satisfies the detailed balance condition if

πipij = πjpji for all i, j. (DB)

We quote (Kolmogorov’s theorem) that this is the same as time-reversibility.
When the Markov chain has suitably good properties (which ensure a

limit distribution) – typically, appropriate recurrence properties, of return-
ing repeatedly to its starting point – then the Markov chain satisfies a SLLN
and a CLT as above. We shall not give details (see e.g. [MeyT] Ch. 17).

It turns out that all this carries over to continuous-state Markov chains
(the case relevant to Statistics), subject to suitable restrictions on the chain,
of which Harris recurrence is the best known.

Markov Chain Monte Carlo (MCMC); Hastings-Metropolis algorithm (HM)

We briefly sketch this; see VII.6 below for statistical applications.
The aim here is to sample from a distribution π. This may be straight-

forward (see IS); if not, we may proceed as follows. We construct a Markov
chain X = (Xn) for which π is the limit distribution (we assume this has a
density, also written π). HM selects a transition density q(x, .) (see below for
choice of q), and then at each step, conditional on Xk−1 = x, HM proposes
a new value Yk drawn from this transition density q(x, .). This value Yk is
accepted as the new value Xk with probability

p(x, y) := min
(

1,
π(y)q(y, x)

π(x)q(x, y)

)
;
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otherwise, Xk is taken as the previous value Xk−1. One can check that this
does indeed define a Markov chain, which satisfies (the continuous form of)
(DB) and has invariant (= equilibrium) distribution π. Here

q(x, y) := p(|x− y|),

for some transition density p of a symmetric random walk (the choice is
usually not critical). What is critical in applying MCMC in practice is the
rate of convergence. We have to run the chain for a long enough ‘burn-in’
period for it to be ‘approximately in equilibrium’.
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