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VII: BAYESIAN METHODS

1. Classical statistics and its limitations.

Broadly speaking, statistics splits into two main streams: (i) classical,
or frequentist, and (ii) Bayesian. Much of classical statistics is devoted to
the following general areas: Estimation of parameters (I), Hypothesis testing
(II). Again, this is not exhaustive: the main remaining area is Non-parametric
statistics (VI). Estimation of parameters itself splits, into
(ia). Point estimation [ e.g., maximum-likelihood estimates, MLEs],
(ib). Interval estimation [e.g., confidence intervals].
Both these are open to interpretational objections. A point estimate is a
single number, which will almost certainly be wrong [i.e., will differ from the
value of the parameter it estimates]. How wrong? And how to proceed?

A confidence interval is more informative, because it includes an error
estimate. For instance, its mid-point can be regarded as a point estimate,
and half its length as an error estimate – leading to conclusions of the form

θ = 3.76± 0.003 (∗)

– with confidence 95% [or 99 %, or whatever]. What does this mean? It is
not a probability statement:
either θ lies between 3.73 and 3.79 [(*) is true, so holds with pr. 100 %]
or it doesn’t [(*) is false, so holds with pr. 0 %].
Problem: We don’t know which!
Interpretation. If a large number of statisticians independently replicated the
analysis leading to (*), then about 95 % of them would succeed in producing
confidence intervals covering the unknown parameter θ. But
(a) We wouldn’t know which 95 %,
(b) This is of doubtful relevance anyway. The large number of independent
replications will usually never take place in practice. So confidence state-
ments like (*) lack, in practice, a direct interpretation. [They are ‘what
happens to probability statements in classical statistics when we put the
numbers in’.]

A further problem is that small changes in our data can lead to abrupt
discontinuities in our conclusions. In borderline situations, θ ‘just within’
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the confidence interval and ‘just outside’ represent diametrically opposite
outcomes, but the data may be very close. Small changes in input should
only lead to small changes in output, rather than abrupt changes.

Hypothesis testing is open to similar objections. It is usual to have a null
hypothesis, H0, representing our present theory (the ‘default option’), and
an alternative hypothesis, H1, representing some proposed alternative theory.
At the end of the investigation, we have to choose between two alternatives.
We may be wrong: we may
reject H0 when it is true, and choose H1 [Type I error, probability α, the
significance level], or
reject H1 when it is true, and choose H0 [Type II error, probability β].
We then have a trade-off between α and β. It is not always clear how to
do this sensibly, still less optimally [it is customary to choose α = 0.05 or
0.01, and then try to minimise β, but this is merely conventional]. Again,
problems present themselves:
(i) We won’t know whether our choice between H0 and H1 was correct;
(ii) Small changes in the data can lead to abrupt changes between choosing
H0 and choosing H1.
Note. This sort of problem occurs everywhere in life, and not just in classical
statistics. Think of any really important decision that turns out to be ”touch
and go”: Brexit vote, Trump vote; goals in football (goal-line technology is
very helpful here, but doesn’t eliminate the need for judgement in borderline
cases); offside decisions in football (ditto), line calls in tennis, etc.; degree
classification (problems at the margin between I/II-1, II-1/II-2 etc.; criminal
trials (‘innocent till proved guilty’; accused ‘gets the benefit of the doubt’;
beyond all reasonable doubt – how reasonable is reasonable?, etc.

Thus both the main branches of classical parametric statistics lead to
abruptly discontinuous conclusions and present interpretational difficulties.
One justification for Bayesian statistics is that it avoids these. There are
many others: we shall argue for Bayesian statistics below on its merits.

2. Prior knowledge and how to update it.

The difficulties identified above arise because in classical statistics we rely
entirely on the data, that is, on the sample we obtained. The mathematics
involved in classical statistics amounts to comparing the sample we actually
obtained with the large (usually, infinite) class of hypothetical samples we
might have obtained but didn’t. These include the samples that we would
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obtain if we repeated our sampling independently – or that other statisticians
would obtain if they independently replicated our work. This is where the
term ‘frequentist’ for classical statistics originates: e.g., in 95 % confidence
intervals, independently replicated confidence intervals would cover the pa-
rameter θ with frequency 0.95.

The other aspect of classical statistics crucial for our purposes is that it
ignores everything before sampling. This is often unreasonable. For instance,
we may know a good deal about the situation under study, based on prior
experience. Such situations are typical in, e.g., industrial quality control:
suppose we are employed by a rope manufacturer, and are testing the break-
ing strain of ropes in a current batch. We may have to hand large amounts
of data obtained from tests on previous batches from the same production
line. Similarly for a scientist, testing a scientific hypothesis.

In hypothesis testing, such prior knowledge by the experimenter (scien-
tific, manufacturing etc.) is tacitly assumed, because we need it to be able to
formulate H0 and H1 sensibly. But we may not be willing to enter the ‘accept
or reject’ framework of hypothesis testing [which some statisticians believe is
inappropriate and damaging]: how then can we use prior knowledge? In the
estimation framework also, we may know a lot about θ before sampling [as
in the rope example above]: indeed, if we do not have some prior knowledge
of the situation to be studied, we would in practice not have enough prior
interest in it to be willing to invest the time, trouble and money to study it
statistically.

Bayesian statistics addresses this by giving a framework where
1. The statistician knows something before sampling: he has some prior
knowledge.
2. He then draws a sample, and analyses the data to extract some relevant
information.
3. He then updates his prior information with his data (or sample) informa-
tion, to obtain posterior information

(prior: before (sampling); posterior: after (sampling)).
This verbal description of the Bayesian approach is attractive, because

it resembles how we learn – and indeed, how we live. Life involves (indeed,
largely consists of) a constant, ongoing process of acquiring new information
and using it to update our previous (‘prior’) information/beliefs/attitudes/policies.

To implement the Bayesian approach, we need some mathematics. The
formulae below derive from the work of the English clergyman
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Thomas BAYES (1702-1761): An essay towards solving a problem in the
doctrine of chances (1763, posth.).
Recall that if A,B are events of positive probability,

P (A) > 0, P (B) > 0,

the conditional probability of A given (or knowing) B is

P (A|B) := P (A ∩B)/P (B).

Symmetrically,

P (B|A) := P (B ∩ A)/P (A) = P (A ∩B)/P (A).

Combining,
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) :

P (B|A) = P (A|B)P (B)/P (A) (Bayes’ formula, or Bayes’ theorem).

Interpretation.
1. Think of A as a ‘cause’, B as an ‘effect’. We naturally first think
of P (effect B|cause A). We can use Bayes’ formula to get from this to
P (cause A|effect B) (think of B as an effect we can see, A as an effect we
can’t see).
2. Suppose we are interested in event B. We begin with an initial, prior
probability P (B) for its occurrence. This represents how probable we ini-
tially consider B to be [this depends on us: we will have to estimate P (B)!].
Suppose we then observe that event A occurs. This gives us new information,
which affects how probable we should now consider B to be, after observing
A [or, to use the technical term, a posteriori]. Bayes’ theorem tells us how
to do this updating: we multiply by the ratio P (A|B)/P (A):

P (B|A) = P (B).P (A|B)/P (A) :

posterior probability of B = prior probability of B × updating ratio.
We first observe some extreme cases.

Independence. If A, B are independent, P (A ∩B) = P (A).P (B), so

P (B|A) = P (A ∩B)/P (A) = P (A).P (B)/P (A) = P (B),

and similarly P (A|B) = P (A): updating ratio = 1, posterior probability =
prior probability – conditioning on something independent has no effect.
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Inclusion.
1. A ⊂ B: here, P (A ∩ B) = P (A), P (A|B) = P (A ∩ B)/P (B) =
P (A)/P (B);

updating ratio P (A|B)/P (A) = 1/P (B), posterior probability = 1.
2. B ⊂ A: P (A∩B) = P (B), P (A|B) = P (A∩B)/P (B) = P (B)/P (B) = 1;

updating ratio P (A|B)/P (A) = 1/P (A), posterior probability = P (B)/P (A).
Partitions. B partitions Ω into two disjoint events B; A is the disjoint union
of A ∩B and A ∩Bc, so

P (A) = P (A ∩B) + P (A ∩Bc) = P (A|B)P (B) + P (A|Bc)P (Bc).

Similarly, if Ω = ∪n1Bi with Bi disjoint, A = ∪n1 (A ∩ Bi), disjoint. So by
finite additivity,

P (A) = Σn
r=1P (A∩Br) = Σn

r=1P (A|Br)P (Br) (Formula of total probability),

using the definition of conditional probability again.
Such expressions are often used for the denominator in Bayes’ formula:

P (Br|A) = P (Br)P (A|Br)/P (A) = P (Br)P (A|Br)/ΣkP (Bk)P (A|Bk).

3. Prior and posterior densities.
Suppose now we are studying a parameter θ. Suppose we have data x

[x may be a single number, i.e. a scalar, or a vector x = (x1, · · · , xn) of
numbers; we shall simply write x in both cases]. Recall that x is an observed
value of a random variable, X say. In the density case, this random variable
has a (probability) density (function), f(x) say, a non-negative function that
integrates to 1:

f(x) ≥ 0,

∫
f(x)dx = 1

(here and below, integrals with limits unspecified are over everything).
Interpretation. P (X ∈ A) =

∫
A
f(x)dx for measurable sets A ⊂ R. For

instance, if A = (−∞, x],

F (x) := P (X ∈ (−∞, x]) = P (X ≤ x) =

∫ x

−∞
f(y)dy ∀x ∈ R;

as x varies, F (x) gives the (probability) distribution (function) of X.]
In brief: the density f(x) describes the uncertainty in the data x.
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The distinctive feature of Bayesian statistics is that it treats parameters
θ in the same way as data x. Our initial (prior) uncertainty about θ should
also be described by a density f(θ):

f(θ) ≥ 0,

∫ ∞
−∞

f(θ)dθ = 1, P (θ ∈ A) =

∫
A

f(θ)dθ ∀A ⊂ R,

where the probability on the left is a prior probability. The analogue for
densities of Bayes’ formula P (B|A) = P (B)P (A|B)/P (A) now becomes

f(θ|x) = f(θ)f(x|θ)/f(x). (∗)

The density on the left is the posterior density of θ given the data x; it de-
scribes our uncertainty about θ knowing x. Now densities integrate to 1:∫
f(θ|x)dθ = 1, so

∫
[f(θ)f(x|θ)/f(x)]dθ = 1:∫

f(θ)f(x|θ)dθ = f(x).

Combining,

f(θ|x) = f(θ)f(x|θ)/
∫
f(θ)f(x|θ)dθ.

In the discrete case, θ and/or xmay take discrete values θ1, θ2, · · ·, x1, x2, · · ·
only, with probabilities f(θ1), f(θ2), · · ·, f(x1), f(x2), · · ·. The above formulae
still apply, but with integrals replaced by sums:

P (X ∈ A) = Σx∈Af(x), P (θ ∈ B) = Σθ∈Bf(θ),

f(x) = Σθf(θf(x|θ), f(θ|x) = f(θ)f(x|θ)/Σθf(θ)f(x|θ).

In the formula f(θ|x) = f(θ)f(x|θ)/f(x), it is θ, the parameter under
study, which is the main focus of interest. Consequently, the denominator
f(x) – whose role is simply to ensure that the posterior density f(θ|x) inte-
grates to 1 (i.e., really is a density) – can be omitted (or understood from
context). This replaces the equation above by a proportionality statement:

f(θ|x) ∝ f(θ)f(x|θ)

(here ∝, read as ‘is proportional to’, relates to the variability in θ, which is
where the action is). Now f(x|θ) can be viewed in two ways:
(i) for fixed θ as a function of x. It is then the density of x when θ is the
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true parameter value,
(ii) for fixed/known/given data values x as a function of θ. It is then called
the likelihood of θ (Fisher), familiar from IS, Ch. I, Ch. II, etc.

The formula above now reads, in words:

posterior ∝ prior × likelihood.

This is the essence of Bayesian statistics. It shows how Bayes’ theorem may
be used to update the prior information on θ before sampling by using the
information in the data x – which is contained in the likelihood factor f(x|θ)
by which one multiplies – to give the posterior information on θ after sam-
pling. Thus posterior information combines two sources: prior information
and data/sample/likelihood information.

4. Examples.
Example 1. Bernoulli trials with Beta prior ([O’H], Ex. 1.4, p.5).

Here θ represents the probability of a head on tossing a biased coin. On
the basis of prior information, θ is assumed to have a prior density propor-
tional to θp−1(1− θ)q−1 (0 ≤ θ ≤ 1) for p, q > 0:

f(θ) ∝ θp−1(1− θ)q−1 (0 ≤ θ ≤ 1).

Writing

B(p, q) :=

∫ 1

0

θp−1(1− θ)q−1dθ

(the Beta function),

f(θ) = θp−1(1− θ)q−1/B(p, q).

[We quote the Eulerian integral for the Beta function: for

Γ(p) :=

∫ ∞
0

e−xxp−1dx (p > 0), B(p, q) = Γ(p)Γ(q)/Γ(p+q) (p, q > 0).]

Note that, as p, q vary, the shape of f(θ) varies – e.g, the graph is u-shaped
if 0 < p, q < 1, n-shaped if p, q > 1. Here p, q are called hyperparameters -
they are parameters describing the parameter θ.

Suppose now we toss the biased coin n times (independently), observing
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x heads. Then x is our data. It has a discrete distribution, the binomial
B(n, θ), described by

f(x|θ) =

(
n

x

)
θx(1− θ)n−x (x = 0, 1, · · · , n).

We apply Bayes’ theorem to update our prior information on θ – our prior
values of p, q – by our data x. Now

f(x) =

∫
f(θ)f(x|θ)dθ =

∫
θp−1(1− θ)q−1

B(p, q)
.

(
n

x

)
θx(1− θ)n−xdθ

=

(
n

x

)
.

1

B(p, q)
.

∫ 1

0

θp+x−1(1− θ)q+n−x−1dθ =

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)
.

So Bayes’ theorem gives

f(θ|x) = f(θ)f(x|θ)/f(x) =

(
n

x

)
.

1

B(p, q)
.θp+x−1(1−θ)q+n−x−1/

(
n

x

)
.
B(p+ x, q + n− x)

B(p, q)

or

f(θ|x) =
θp+x−1(1− θ)q+n−x−1

B(p+ x, q + n− x)
.

The posterior density of θ is thus another Beta density, B(p+ x, q + n− x).
Summarising:
prior B(p, q) is updated by data x heads in n tosses to posterior
B(p+ x, q + n− x).
Graphs. To graph the three functions of θ – prior, likelihood and posterior –
first find their maxima.
Likelihood: f(x|θ) has a maximum where log f(x|θ) has a maximum, i.e.
where
x log θ + (n− x) log(1− θ) has a maximum, i.e. where

x

θ
− n− x

1− θ
= 0 : x− xθ = nθ − xθ : θ = x/n.

Prior: similarly, f(θ) has a maximum where log f(θ) does, i.e. where

p− 1

θ
− q − 1

1− θ
= 0 : p− pθ − 1 + θ = qθ − θ : θ = (p− 1)/(p+ q − 2).

Example 2. Normal family with normal prior ([O’H], Ex. 1.5 p.7). Suppose
x is the sample mean of a sample of n independent readings from a normal
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distribution N(θ, σ2), with σ known and θ the parameter of interest. So x is
N(θ, σ2/n):

f(x|θ) =
1√

2π.σ/
√
n

exp{−1

2
(x− θ)2/

σ2

n
}.

Suppose that on the basis of past experience [prior knowledge] the prior
distribution of θ is taken to be N(µ, τ 2):

f(θ) =
1√
2πτ

exp{−1

2
(θ − µ)2/τ 2}.

Now f(x) =
∫
f(θ)f(x|θ)dθ:

f(θ)f(x|θ) =
1

2π.τσ/
√
n
. exp{−1

2

[(θ − µ)2

τ 2
+

(x− θ)2

σ2/n

]
}.

The RHS has the functional form of a bivariate normal distribution (IV.2 D7,
[BF] 1.5). So to evaluate the θ-integration, we need to complete the square
(cf. solving quadratic equations!). First,

(x− θ)2 = [(x− µ)− (θ − µ)]2 = (x− µ)2 − 2(x− µ)(θ − µ) + (θ − µ)2.

We write for convenience

c :=
1

τ 2
+

1

σ2/n
:

f(θ)f(x|θ) = const. exp{−1

2

[
c(θ − µ)2 − 2

σ2/n
(θ − µ)(x− µ) + function of x

]
}

= const. exp{−1

2
c
[
(θ − µ)2 − 2(θ − µ)(x− µ)

cσ2/n
+ function of x

]
}

= const. exp{−1

2
c
(
θ − µ− x− µ

cσ2/n

)2

+ function of x}.

Then from (*), to get the posterior density f(θ|x) we have to take the
product f(θ)f(x|θ) above, and divide by f(x) – a function of x only (θ has
been integrated out to get it). So: the posterior density f(θ|x) is itself of
the form above, as a function of θ (with a different constant and a different
function of x – but these do not matter, as our interest is in θ).

We can now recognise the posterior f(θ|x) – it is normal. We can read
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off:
(i) its mean, µ+ (x− µ)/(cσ2/n),
(ii) its variance, 1/c. Thus the posterior precision is c. But from the definition
of c, this is the sum of 1/τ 2, the prior precision, and 1/(σ2/n), the data
precision. By (i), the mean is

µ[1− data precision

posterior precision
] + x.[

data precision

posterior precision
],

or

µ[
prior precision

posterior precision
] + x.[

data precision

posterior precision
].

This is a weighted average of the prior mean µ and the data value x (the
sample mean of the n readings), weighted according to their precisions. So:
(a) the form, mean and variance (or precision) of the posterior density are
intuitive, statistically meaningful and easy to interpret,
(b) the conclusions above show clearly how the Bayesian procedure synthe-
sises prior and data information to give a compromise,
(c) the family of normal distributions is closed in the above example: a nor-
mal prior and normal data give a normal posterior. This is an example of
conjugate priors, to which we return later.
Note. The example above on the normal distribution makes another impor-
tant point: often θ will be a vector parameter, θ = (θ1, · · · , θp) – as with, e.g.,
the normal distribution N(µ, σ2). For simplicity, the variance σ2 in the above
was taken known. But in general, we will not know σ2. Instead, we should
include it in the Bayesian analysis, representing our uncertainty about it in
the prior density. We then arrive at a posterior density f(θ|x) for the vector
parameter θ = (θ1, · · · , θp). If our interest is in, say, θ1, we want the poste-
rior density of θ1, f(θ1|x). We get this just as in classical statistics we get
a marginal density out of a joint density – by integrating out the unwanted
variables.

In the normal example above, Ex. 2, we could impose a prior density on
σ without assuming it known. This can be done ([O’H], Ex. 1.6 p.8, Lee [L],
§2.12), but there is no obvious natural choice, so we shall not do so here.

Example 3. The Dirichlet distribution ([O’H], Ex. 1.7 p.10, §10.2-6). Con-
sider the density in θ = (θ1, · · · , θk) on the region

θ1, · · · , θk ≥ 0, θ1 + · · ·+ θk = 1
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(a simplex in k dimensions), with density

f(θ) ∝ Πk
i=1θi

ai−1

for constants ai. We quote that the constant of proportionality is

Γ(a1 + · · ·+ ak)/Γ(a1) · · ·Γ(ak),

by Dirichlet’s integral, an extension of the Eulerian integral for the gamma
function (see [O’H] 10.4, or, say, 12.5 of
WHITTAKER, E. T. & WATSON, G. N.: Modern analysis, 4th ed., 1927/1963,
CUP).
Thus the Dirichlet density D(a1, · · · , ak) with parameters θ1, · · · , θk is

f(θ) :=
Γ(a1 + · · ·+ ak)

Γ(a1) · · ·Γ(ak)
.θ1

a1−1 · · · θkak−1.

Now draw a random sample of size n from a population of k distinct types of
individuals, with proportions θi of type i (i = 1 · · · k). Then the likelihood is

f(x|θ) =
n!

x1! · · ·xk!
.θ1

x1 · · · θkxk ,

the multinomial distribution. So

f(x|θ)f(θ) = const.θ1
x1+a1−1 · · · θkxk+ak−1,

and the posterior density f(θ|x) is also of this form, with a different constant
(making it a density - i.e., integrating to 1). We recognise the functional
form of a Dirichlet density, with ai replaced by ai + xi. So

f(θ|x) =
Γ(a1 + · · ·+ ak + n)

Γ(a1 + x1) · · ·Γ(ak + xk)
.θ1

a1+x1−1 · · · θkak+xk−1

(as x1 + · · ·xk = n, the sample size).
Example 4. Poisson and Gamma distributions ([O’H], Ex. 1.1, 1.2 p.21).

Data: x = (x1, · · · , xn), xi independent, Poisson distributed with param-
eter θ:

f(x|θ) = Πn
1f(xi|θ) = θx1+···+xne−nθ/x1! · · ·xn! = θnx̄e−nθ/Πxi!,
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where x̄ := 1
n
Σxi is the sample mean.

Prior: the Gamma density Γ(a, b) (a, b > 0):

f(θ) =
abθb−1

Γ(b)
e−aθ (θ > 0) :

f(x|θ)f(θ) =
ab

Γ(b)Πxi!
θnx̄+b−1e−(n+a)θ,

f(θ|x) ∝ f(x|θ)f(θ) = const.θnx̄+b−1e−(n+a)θ.

This has the form of a Gamma density. So, it is a Gamma density,
Γ(n+ a, nx̄+ b):

f(θ|x) =
(n+ a)nx̄+b

Γ(nx̄+ b)
.θnx̄+b−1e−(n+a)θ (θ > 0).

Means. For Γ(a, b), the mean is

Eθ =

∫ ∞
0

θf(θ)dθ =
ab

Γ(b)
.

∫ ∞
0

θbe−aθdθ.

Substituting t := aθ, the integral is Γ(b+ 1)/ab+1, which is bΓ(b)/ab+1 using
the functional equation for the Gamma function, Γ(x + 1) = xΓ(x). So the
mean is Eθ = b/a. Similarly,

Eθ2 =

∫ ∞
0

θ2f(θ)dθ = Γ(b+ 2)/ab+2,

so varθ = E(θ2)− [Eθ]2 = b(b+ 1)/a2 − (b/a)2 = b/a2.
So by above, the prior mean is b/a; the posterior mean is (nx̄+b)/(n+a);

the data mean is x̄. Write

λ := a/(n+ a), so 1− λ = n/(n+ a) : since

nx̄+ b

n+ a
=

a

n+ a
.
b

a
+

n

n+ a
.x̄,

posterior mean (nx̄+b)/(n+a) = λ. prior mean b/a+(1−λ). sample mean x̄.

Again, this is a weighted average, with weights proportional to n and a. Now
n is the sample size, a measure of the precision of the data, and a is the rate
of decay of the Gamma density, a measure of the precision of the prior infor-
mation.
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5. Pros and cons

5a. Advantages of the Bayesian paradigm
1. Updating.

Bayesian procedures provide an efficient algorithm for updating prior in-
formation as new data information is obtained. This is attractive theoreti-
cally: it reflects the way we all constantly update our thinking in the light of
new experience, and it works well in a range of examples, as VII.4 shows. It
also works well in many practical situations. It is particularly well suited to
situations involving time, when new information is constantly coming in. Re-
cursive algorithms exist for handling such situations on-line, or in real time,
using computers. Such algorithms are typically Bayesian; an example is the
Kalman filter (V.11 D9), used for on-line control problems (e.g., adjusting
orbits of satellites) from the 1960s on.
2. Uncertainty.

We have seldom used the words ‘probability’ or ‘random’ in the above.
Technically, Bayesian statistics differs from classical statistics by treating pa-
rameters, not as unknown constants, but – in effect (and explicitly, in [O’H])
– as random variables. This is necessary: only random variables can have
distributions, prior and/or posterior.

This change of view – away from thinking of random variables and pa-
rameters as separate, towards treating them on the same footing, thinking
about uncertainty – is often helpful, provided one takes the trouble to get
used to it. This chapter is designed to do just that!

Some Bayesians carry this shift away from probability language to sur-
prising extremes. An example is the famous dictum by the father of 20th
century Bayesian statistics, Bruno de FINETTI (1906-1985):

PROBABILITY DOES NOT EXIST!

We would not go so far, but do recommend the Bayesian viewpoint as being
useful and workable.
3. Subjectivity.

The information in the data is objective: it is the same to all statisti-
cians following the same procedure and obtaining that data. By contrast,
the information used in the choice of prior is subjective: it reflects the expe-
rience/knowledge/beliefs of the statistician (or his client). This subjectivity
persists into the posterior distribution after we use Bayes’ Theorem: the en-
tire analysis has been personalised, to suit the statistician (or his client).
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4. Decision Theory.
The Bayesian formulation (or paradigm) combines well with the ideas of

Decision Theory. For this important subject, see e.g. [L].
One context in which the Bayesian/decision-theoretic approach is useful

is in business/finance/investment. Suppose one is faced with the need to take
major business decisions – e.g., whether/where/when to drill for oil. Drilling
is very expensive, and may well produce no return on the large investment
of capital in the shape of exploitable oil reserves. But, commercially viable
oil reserves can be profitably exploited – and necessarily have to be found by
risky exploratory drilling. Nothing venture, nothing win. This area involves
real options, or investment options; see e.g. [Math428], VI.6 Week 11.

In such situations, the Bayesian approach quantifies one’s uncertainty:
decision theory then helps one to act rationally given one’s beliefs.
5. Output.

The end-product of a Bayesian analysis is a posterior distribution. This
is more informative than
(i) a number [point-estimate: e.g., a maximum-likelihood estimate],
(ii) two numbers [interval estimate: e.g., a confidence interval].
It also depends continuously on what it depends on – the prior information
and the data information. The discontinuous ‘accept or reject’ framework of
hypothesis testing is avoided.
6. Nuisance parameters.

A nuisance parameter is what its name implies: a parameter which is
present in the formulation of the model, but absent from the question of in-
terest. The parameter(s) in which we are interested are called, by contrast,
parameters of interest or interest parameters.
E.g.: Testing for equality of two normal means.
The usual classical assumption for testing H0 : µ1 = µ2 v. H1 : µ1 6= µ2,
for two normal populations N(µi, σ

2
i ), is to assume equality of variances:

σ1 = σ2. Testing for equality of means without assuming equality of vari-
ances is a famous statistical problem, the Behrens-Fisher problem. It has a
satisfactory solution (Scheffé’s solution) when the two sample sizes n1, n2 are
equal, but not in general.
E. g.: Testing for normality. Is this population normal? Here both µ and σ
are nuisance parameters. It is much easier to ask: is this population N(µ0, σ0)
for specified µ0, σ0? than to ask: is it N(µ, σ) for some µ, σ? One approach
would be to estimate the mean and variance from the data, and then ‘plug
in’ these estimates to try to reduce the second question to the first – but this
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sort of procedure can be hard to justify.
In principle, nuisance parameters are easily handled in Bayesian statistics.

If θ = (θ1, θ2) with θ1 the interest parameter and θ2 the nuisance parameter
(either or both of θ1, θ2 can be several-dimensional), one finds the posterior
density f(θ|x) as usual. This is the joint density of θ1 and θ2 (given the
data x), so one extracts the marginal density of θ1 (given x) as usual, by
integrating out the unwanted variable θ2:

f(θ1|x) =

∫ ∞
−∞

f(θ|x)dθ2 =

∫ ∞
−∞

f(θ1, θ2|x)dθ2.

Of course, the integration may be difficult to perform – it may, in practice,
need to be done numerically. But such problems are quite general, and not
the fault of Bayesian statistics!

7. The Likelihood Principle.
As the fundamental formula of Bayesian statistics,

posterior density is proportional to prior density times likelihood

shows, the data only enters a Bayesian analysis through the likelihood. The
Likelihood Principle (LP), formulated by G. A. BARNARD (1915-2002) (in
a series of papers, 1947-1962) and A. BIRNBAUM (1962) says that the data
should only enter any statistical analysis through the likelihood. Thus

Bayesian statistics satisfies the Likelihood Principle.

Classical statistics, however, violates the LP. O’Hagan, for instance, dis-
cusses a number of examples, including ([O’H] 33):
Bernoulli trials, success probability θ. Consider two situations:
(a) n trials; you observe r successes;
(b) toss till you observe the rth success: you need n trials.
The two likelihoods are the same [apart from constant factors, arising because
in (b), but not in (a), the last toss must be a success]: to a Bayesian statis-
tician, these situations are equivalent. To a classical statistician, however,
they are quite different. For instance, the stopping rules are quite different
[the area of statistics where one continues sampling until something happens
and then stops is called Sequential Analysis]. [O’H] (5.14-15) points out that
(a) the minimum variance unbiased estimators of θ differ in these two cases;
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(b) the very concept of unbiasedness itself violates the LP. For, it involves
an expectation over the distribution of x - the bias in a statistic T (x) is

b := E[T (x)|θ]− θ

– and this involves values of x we could have seen but didn’t. The LP insists
we take account only of the values of x we did see.

For a full-length (pro-Bayesian) account of the LP, see
BERGER, J. O. & WOLPERT, R. L. (1988): The Likelihood Principle (2nd
ed.), Institute of Mathematical Statistics.

8. MCMC and the Gibbs sampler.
Modern computing power has made many previously intractable Bayesian

implementations possible in practice. Key theoretical advances here are
MCMC (Markov Chain Monte Carlo) and the Gibbs sampler (Gelfand &
Smith 1990).

5b. Disadvantages of the Bayesian paradigm.
1. Choice of prior.

A Bayesian analysis cannot even begin without a choice of prior density
(or distribution). This may well be problematic:
(a) we may have little prior information;
(b) what prior information we have may not suggest a mathematically con-
venient, or even tractable, choice of prior;
(c) the choice may be to some extent arbitrary;
(d) different choices of prior may (will) lead to different conclusions;
(e) we may have too sparse a collection of suitable families of priors to hand.
Of course, problems of this sort affect classical parametric statistics too. But
classical statistics can fall back in such cases on a non-parametric approach,
for which Bayesian treatments are less well developed, and in any case the
problem is more acute in Bayesian statistics, as we have to choose suitable
forms for both the prior and the likelihood.
Undoubtedly, choice of prior is the hardest thing in many – or even most –
Bayesian analyses, and is the feature of Bayesian statistics most objection-
able to non-Bayesians.
2. Prior ignorance.

The less a Bayesian knows, the harder he finds it to choose a prior. The
worst-case scenario for a Bayesian is little (or even no) prior knowledge. To a
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non-Bayesian, this is a non-problem: simply use a classical analysis, relying
on the data (which is all we’ve got).

If θ belongs to a finite interval, [a, b] say, there is a natural choice of prior
to represent prior ignorance: the uniform density on [a, b]:

f(θ) := 1/(b− a) if a ≤ θ ≤ b, 0 else.

But, there is no analogous density in an infinite interval - the real line, say.
If f(θ) ≡ c > 0, then either c = 0, when

∫∞
−∞ f(θ)dθ = 0, or c > 0, when∫∞

−∞ f(θ)dθ = +∞. It is impossible to get
∫∞
−∞ f(θ)dθ = 1, the condition for

f(θ) ≥ 0 to be a density, without f(θ) varying with θ. But this treates some
θ-values differently from others, which is inconsistent with prior ignorance,
when we have no grounds to discriminate between different values of θ.
Note. Some Bayesian statisticians have advocated using improper priors (al-
lowing

∫∞
−∞ f(θ)dθ = +∞) in such cases, for this reason. But this is hard to

justify, and is becoming less common nowadays.
3. Objectivity.

The Bayesian paradigm is well suited to situations where a subjective
view is appropriate – particularly where a decision-taker has to act in the
face of uncertainty, as in Decision Theory. Typical examples include business-
men facing management decisions about investment (whether/where/when
to drill for oil, for instance). The manager’s judgement is fed into the choice
of prior, and he stands or falls by it. The subjective view is appropriate here.

By contrast, in science, one seeks objectivity. Whether or not Nature
works in a certain way depends on Nature (or God), not on our opinions or
beliefs [we leave to one side foundational questions about quantum mechan-
ics, and whether or not a quantum formulation necessarily involves the mind
of the observer]. Consequently, the Bayesian paradigm has met with more
resistance in science than in business, because of the higher value put there
on objectivity as against subjectivity.
Note. Lee’s book makes telling use of examples about dating rocks in geol-
ogy. Obviously the age of a rock (some hundreds of millions of years old) is
completely objective – it hs nothing to do with us or our opinions. Indeed,
it is hard to imagine anything more indifferent to us than a chunk of rock.
It has a definite age; God (or Nature) knows this, but won’t tell us. We
thus have no means, even in principle, of assessing the age of a rock sample
(which long predates humanity!) other than our own experimentation, ob-
servation and analysis, which will provide partial knowledge with remaining
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uncertainty. The Bayesian paradigm does provide a sensible way of express-
ing this. So, despite the obvious objection about subjectivity, a Bayesian
approach is quite defensible where, as here, it produces sensible results and
there is nothing else to do.
4. Summary statistics and dimensionality.

For a one-dimensional parameter θ, the output is a posterior density,
which we can graph. This is an advantage: ‘One picture is worth a thousand
words’ ! The advantage is particularly telling if, as we assume, a computer
graphics capability is available. For a two-dimensional parameter θ, the
output is a posterior density in the plane, which we can ‘graph’ in three
dimensions, using a suitable computer graphics package. Again, this is an
advantage. In three dimensions, graphics are no longer applicable, because
four dimensions would be needed.

In higher dimensions, the situation rapidly gets even worse. We cannot
graph the output; it becomes increasingly difficult even to visualise the out-
put. Instead, we seek to summarise the output, using suitable summary
statistics (e.g., mean/median/mode, covariance matrix, measures of skew-
ness/kurtosis, ...). Thus the extra information in the Bayesian output (pos-
terior density), over and above that from a classical output (summary statis-
tics), is no longer an advantage – because we cannot use it – but actually a
drawback – because we have to work to get back to summary statistics, such
as a classical treatment provides anyway.
Note. 1. Summarisation methods are discussed in detail in [O’H], 2.1 – 2.24.
2. The dimensional aspects above underscore the principle of parsimony: one
should seek to work in as low a dimensionality (i.e., with as few parameters)
as possible. [It is quite common to find the complexity of a theory growing
uncontrollably with increase in dimension. This phenomenon is called the
curse of dimensionality, a term due to Richard Bellman.]
3. If the right dimensionality is not clear, we may be able to formalise the
trade-off between the better fit a higher dimension can provide against the
extra complexity by using methods such as Akaike’s Information Criterion
(AIC): see e.g. [BF] 5.2.1, [O’H], Ch. 7.

5. Integration.
Bayesian statistics involves the need to integrate in several ways:

(i) to get f(x|θ)f(θ)dθ,
(ii) to get marginal posterior densities from joint posterior densities - e.g., to
eliminate nuisance parameters,
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(iii) to produce summary statistics as above - e.g., posterior means, etc.
Such integrations may be hard or impossible to do analytically. We may
need to integrate numerically. This may be computer-intensive, and involves
a good knowledge of, e.g.,
(a) numerical analysis as a branch of mathematics,
(b) computer implementation - e.g., by using the NAG Library [NAG = Nu-
merical Algorithms Group, Oxford University].

Since c. 1990 (e.g. the Gelfand-Smith paper in JASA), much theoreti-
cal and practical progress in such areas has been made, using Markov Chain
Monte Carlo (MCMC) methods – techniques such as the Metropolis-Hastings
algorithm (VI.4 above and VII.6 below) and the Gibbs sampler. Such meth-
ods are extensively used nowadays (see e.g. the MSc in Statistics here).

6. Hierarchical models; Markov Chain Monte Carlo (MCMC).

In the Bayesian paradigm, everything is random, including the parame-
ters; also, the parameters are drawn from a prior, and we may have difficulty
in choosing the prior. Such difficulties may be lessened if we draw the param-
eters of the prior from some ‘prior prior’, which will itself have parameters,
called hyperparameters. Such a model is called a hierarchical model. Our
main sources here are Robert [R] Ch. 8,9, Gelman et al. [GCSR] Ch. 5, 11.

Definition. A hierarchical Bayes model is a Bayesian model (f(x|θ), π(θ)) in
which the prior π(θ) is decomposed into conditional distributions

π1(θ|θ1), π2(θ1|θ2), . . . , πn(θn−1|θn)

and a marginal πn+1(θn|θn) such that

π(θ) =

∫
. . .

∫
π1(θ|θ1)π2(θ1|θ2)πn(θn−1|θn)πn+1(θn)dθ1 . . . dθn+1. (H)

The parameters θi are called hyperparameters of level i.

A hierarchical Bayes model is itself a Bayesian model, but the decomposi-
tion (H) is often useful – e.g., in MCMC (below), and in revealing structural
information.

One rarely needs to go beyond n = 2, and we shall not do so. So we shall
always have

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1). (H)
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Here the distribution of θ is a mixture of the θ1, with mixing distribution π2.

Example: Random effects in the linear model.
We may have a mixed model, with some fixed effects, as in IV, and some

random effects. The classical instance of this is Henderson’s work on the
breeding of dairy cows (1950). The fixed effects are the objects of study –
typically, diet, of interest for its effect on milk yield. The random effects are
the animals – animals differ, just as people do. It is conventional to write
the model equation here as

y = Xβ + Zu+ ε,

where
W = (X,Z)

is the n × (p + q) design matrix, X (n × p) and Z (n × q) are the design
submatrices for the fixed and random effects. We take the random effects
u and the error ε uncorrelated (independent when both are Gaussian, as we
may as well assume here). The best linear unbiased estimator (BLUE) of
IV.1 is conventionally called a best linear unbiased predictor (BLUP) here.
These are the solutions of Henderson’s mixed model equations (MMEs). Two
different forms of the BLUP are given in [BF] 9.1. The use of Bayes’ theorem
is mentioned there. This is a hierarchical model with

y|θ ∼ N(θ,Σ1), θ|β ∼ N(Xβ,Σ2).

Here the mean θ of y is decomposed into the fixed effects Xβ and the random
effects Zη, where η ∼ N(0,Σ2).
Education.

Mixed models are widely used in educational studies (and more widely
in Social Statistics). Here the fixed effects are the ones being studied – con-
cerning, e.g., influence on performance of changes in syllabus, examination
mode etc. The random effects are the pupils.
Finance.

Here the fixed effects are state of the economy, industrial sector etc. The
random effects are the specific characteristics of the individual firms involved
in the study.
Bayesian v. classical.

Strictly speaking, whether this procedure is classical or Bayesian depends
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on what our inference is about. The procedure is classical if the inference
is about the fixed effects (β), but Bayesian if it is about the overall effects (θ).

Normal mean-variance mixtures (NMVM); normal variance mixtures (NVM).
The Bessel function of the third kind, or Macdonald function, Kλ (λ real)

is defined (for our purposes) by the integral representation

Kλ(x) =
1

2

∫ ∞
0

uλ exp{−1

2
(u+ 1/u)}du/u (x ≥ 0).

Then for ψ, χ > 0,

f(x) :=
(ψ/χ)

1
2
λ

2Kλ(
√
ψχ)

xλ−1 exp{−1

2
(ψx+ χ/x)} (x > 0)

is a probability density, the generalised inverse Gaussian (GIG).
The distribution of x ∼ N(µ + βσ2, σ2), where σ2 is sampled randomly

from GIG, forms a normal mean-variance mixture (NMVM), with mixing
distribution GIG. It is called the generalised hyperbolic distribution, GH.
The case β = 0 is simpler; we then get a normal variance mixture (NVM).

The GH distributions have been much used in mathematical finance,
specially for return distributions with intermediate return interval – say,
daily returns (Bingham & Kiesel 2001; Barndorff-Nielsen 1970s-90s; Eberlein
1990s). The log-density is a (branch of a) hyperbola (hence the name). As a
hyperbola has linear asymptotes, the log-density decays linearly at ±∞. By
contrast, the Gaussian log-density (monthly returns) decays quadratically,
while the Student t log-density (tick data) decays logarithmically.

The GH distributions can be defined in any number of dimensions. They
have two important general properties:
1. They are elliptical. They are an important parametric special case within
this semi-parametric setting; see I.6.2 D2, V.6 D6, VI.3 D10.
2. They are self-decomposable: they belong to the class SD of distributions
of stationary AR(1) time-series models,

Xt = ρXt−1 + εt.

Bayesian sampling; HM.
We return to (H), in the form

π(θ|x) =

∫
π1(θ|x, λ)π2(λ|x)dλ. (H)
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If we can sample efficiently from π1 and π2, we can use MCMC (in the form of
a Bayesian sampling technique, data augmentation (Tanner & Wong, 1987))
to sample from π, by the following iterative algorithm.
Initialisation: Start with an arbitrary value λ0.
Iteration: For i = 1, . . . , k, generate
a. θi ∼ π1(θ|x, λi−1);
b. λi ∼ π2(λ|x, θi).
The generation of θi only depends on θi−1, not on previous values, so (θi)
has the Markov property. Under suitable regularity conditions, this Markov
chain will be ergodic, with limiting distribution π; furthermore, the approach
to stationarity will often be geometrically fast.

The Hastings-Metropolis algorithm HM in this setting runs as follows.
To sample from a distribution π known up to a normalising factor, and given
a transition kernel q(θ|θ′), HM proceeds as follows.
(i) Start with θ0 arbitrary.
(ii) Update from θm to θm+1 by:
1. Generate ξ ∼ q(.|θm);
2. Define

ρ :=
( π(ξ)q(θm|ξ)
π(θm)q(ξ|θm)

)
∧ 1.

3. Take
θm+1 := ξ with probability ρ, θm otherwise.

Again under suitable regularity conditions, the Markov chain (θm) converges
to the equilibrium distribution π as m increases. The convergence is often
geometrically fast, again under suitable conditions.

Graphical models
It is possible to model complex statistical situations, with many variables,

some of which are conditionally independent given others. Such conditional
independence can be conveniently encoded, and represented visually, using
graphs (in the sense of Graph Theory, an important branch of Combinatorial
Theory). We must be brief here; we refer for a monograph treatment to
Steffen L. LAURITZEN, Graphical models, OUP, 1996.

Graphical models originate in three different areas:
(i) Statistical Physics, in the work of Gibbs1. Here the idea is that particles

1J. W. Gibbs (1839-1903), American; one of the three founding fathers of Statistical
Physics, with James Clerk Maxwell (1831-1879), Scottish, and Ludwig Boltzmann (1844-
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can only interact with their immediate neighbours.
(ii) Genetics. This, incidentally, is one of the major application areas of
heirarchical models, MCMC etc. (Human Genome Project, etc.).
(iii) Contingency tables. The analysis of complicated multi-dimensional con-
tingency tables, where the data is counts cross-classified by characteristics,
is important in the Social Sciences.

See in particular Lauritzen, Ch. 4 (Contingency tables), Ch. 5 (Mul-
tivariate normal models), 7.3.1 (MCMC); also EM algorithm (two steps –
expectation, maximisation), 7.4.1.

Postscript.
1. Bayesian solution of the equity premium puzzle.

Following Markowitz (I.5), we should diversify our financial savings into
a range of assets in our portfolio – including cash (invested risklessly – e.g.,
by buying Government bonds, or ‘gilts’, or putting it in the bank or building
society – which we suppose riskless here, discounting such disasters as the
Icelandic banking crisis, Northern Rock, RBS etc.) and risky stock. There
is no point in taking risk unless we are paid for it, so there will be an excess
return – equity premium – µ−r of the risky stock (return µ) over the riskless
cash (return r), to be compared with the volatility σ of the risky stock via
the Sharpe ratio (or market price of risk) λ := (µ − r)/σ). Historical data
show that the observed excess return seems difficult to explain.

A Bayesian solution to this ‘equity premium puzzle’ (the term is due to
Mehra & Prescott (1985)) has been put forward by Jobert, Platania and
Rogers: there is no equity premium puzzle, if one uses a Bayesian analysis
to reflect fully one’s uncertainty in modelling this situation. See
[JPR] A. JOBERT, A. PLATANIA & L. C. G. ROGERS, A Bayesian so-
lution to the equity premium puzzle. Preprint, Cambridge (available from
Chris Rogers’ homepage: Cambridge University, Statistical Laboratory).
The Twenties Example [JPR]. One observes daily prices of a stock for T
years, with an annual return rate of 20% and an annual volatility of 20%.
How large must T be to give confidence intervals of ±1% for (i) the volatility,
(ii) the mean? Answers: (i) about 11; (ii) about 1,550!!

This illustrates what is called mean blur; see e.g.
D. G. LUENBERGER, Investment Science, OUP, 1997.
Rough explanation: for the mean, only the starting and final values matter

1906), German.
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(so effective sample size is 2); for the volatility, everything matters.
For non-Bayesian approaches, see e.g. Maenhout, Rev. Fin. Studies

(2004), Barillas, Hansen & Sargent, J. Econ. Th. (2009).

2. Bayesian Non-parametrics.
We have discussed Bayesian statistics at some length in this Ch. VII, and

(more briefly) Non-parametric statistics in Ch. VI. It is natural to wonder
whether the two can be combined – and indeed, they can. This has been
enormously helped by the growth of modern computer power. For those
interested: e.g., Googling ”Bayesian non-parametrics” produced 7,990 hits
and ”Bayesian nonparametrics” 30,700. There are lots of connections with
machine learning, for example, and lots of applications. NHB
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