
ma414l1.tex
Lecture 1. 12.1.2012

I. ANALYSIS; PROBABILITY

1. Lebesgue Measure and Integral
We recall Lebesgue measure (MA411 Probability and Measure) λ: de-

fined on intervals (a, b] by λ((a, b]) := b − a (so λ is translation-invariant),
and then on the σ-field generated by the intervals (Borel σ-field) by the
Carathéodory Extension Theorem, and then by completion to the σ-field of
Lebesgue-measurable sets (σ-field generated by the Borel sets and the null
sets – sets of measure 0). This gives the mathematics of length. In particular,
λ is a measure – is σ- (countably) additive; also, non-measurable sets occur
(in profusion) – though to construct one explicitly requires the Axiom of
Choice, AC (recall Zermelo-Fraenkel set theory, ZF, the logical foundations
of ordinary Mathematics, and ZFC, ZF + AC). Similarly for area in the plane,
starting from λ((a1, b1]× (a2, b2]) := (b1 − a1)(b2 − a2), and volume in three-
dimensional Euclidean space, starting from λ((a1, b1] × (a2, b2] × (a3, b3]) :=
(b1 − a1)(b2 − a2)(b3 − a3); similarly also for Lebesgue measure λ, or λk,
in Euclidean k-space. Lebesgue measure is by construction invariant under
translations; it is also invariant under rotations (start from plane polars co-
ordinates, or spherical polars in k dimensions, and use uniqueness of the
Carathéodory extension procedure); combining, Lebesgue measure is invari-
ant under the Euclidean motion group.

A measurable function f from a measurable space (Ω,A) to the reals with
the Borel σ-field is a function such that the inverse image f−1(B) := {x :
f(x) ∈ B} of any Borel set B (equivalently, any interval I) is in A. If A is
the σ-field of Lebesgue-measurable sets, we call f (Lebesgue-) measurable;
similarly for f Borel-measurable if A is the Borel σ-field B.

Recall also the Lebesgue integral. This is defined for indicator functions
of intervals f = I(a,b] by

∫
f , or

∫
f(x)dx, := b − a. This extends to simple

functions (linear combinations of indicators of intervals) by linearity. A non-
negative measurable function f is the increasing limit of a sequence of simple
functions fn, and one can extend the integral to such f by

∫
f := lim

∫
fn.

The limit, which exists as the integral is order-preserving and fn ↑ f , can be
shown to be independent of the approximating sequence (or, one can define∫
f := sup{

∫
fn : fn ≤ f, fn simple}); one calls such f (Lebesgue-) integrable
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if
∫
f < +∞. One can extend to measurable functions of either sign by linear-

ity: if f = f+− f− with f± non-negative and measurable,
∫
f :=

∫
f+−

∫
f−.

This gives the class of (Lebesgue-) integrable functions, L1.
From the definition of the integral above, if two functions agree a.e. (al-

most everywhere – except on a null set), then their integrals agree. This
means that the integral is really defined, not for functions but for equiva-
lence classes of functions, under the equivalence relation of equality a.e. So
L1 above is really a space of equivalence classes of functions, not of functions
(we use the same letter as before so as not to complicate the notation – there
is no risk of ambiguity).

For p > 0, Lp (or Lp) is the class of (equivalence classes of) functions f
with fp ∈ L1. These are the Lebesgue spaces of Lp spaces.
Properties of the integral. The (Lebesgue) integral is
1. linear:

∫
af + bg = a

∫
f + b

∫
g (here a, b are constants and f, g are func-

tons, understood);
2. order-preserving: f ≤ g implies

∫
f ≤

∫
g;

3. absolute: f is integrable iff |f | is integrable (we have to restrict to inte-
grals < +∞ in the non-negative case, so as to avoid nonsensical expressions
∞−∞ when we extend from the non-negative to the general case);
4. an extension of the (proper) Riemann integral: if f : [a, b] → R is
Riemann-integrable, it is Lebesgue-integrable to the same value.
5. A function f on [a, b] is Riemann-integrable iff it is continuous a.e. This
shows that many more functions are Lebesgue-integrable than are Riemann-
integrable. For example, the indicator function f of the rational numbers
in [0, 1] is Lebesgue-integrable, to 0, as it is a.e. 0 (the set of rationals is
countable, and any countable set has measure 0). But this f is discontinuous
everywhere (as the rationals are dense in the reals) – so it is as far from being
Riemann-integrable as it could be.
Convergence theorems.

We often need to interchange limit and integral, to conclude
∫
lim fn =

lim
∫
fn. This can be done in Real Analysis using the Riemann integral,

provided that fn → f uniformly. The Riemann integral is also suitable in
Complex Analysis, where if functions fn are holomorphic (= analytic, or reg-
ular) and fn → f uniformly on compact subsets of a domain D where they
are holomorphic, then
(i) f is also holomorphic;
(ii) the derivatives f (k)

n are (holomorphic and) convergent: f (k)
n → f on D

(the proof uses Morera’s Theorem and the Cauchy Integral Formulae from
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Complex Analysis).
But for Real Analysis beyond a first course, and for Probability Theory

(and hence also, Mathematical Finance), uniform convergence is much too
restrictive. We need pointwise convergence, plus something. We quote the
three classic results of this kind (M, F, D – they are in fact equivalent).
M (Lebesgue’s Monotone Convergence Theorem – monotone convergence).
If fn ↑ f and fn are integrable,

∫
fn ↑

∫
f (if f is integrable;

∫
fn ↑ +∞

otherwise).
F (Fatou’s Lemma). (i) If fn are measurable and bounded below by an inte-
grable function g, fn → f a.e., and supn

∫
fn ≤ K, then f is integrable and∫

f ≤ K;
(ii) ∫

lim infn→∞fn ≤ lim inf
n→∞

∫
fn.

Of course, applying the result to −fn gives the alternative form: for functions
bounded above by an integrable function,

∫
lim sup ≥ lim sup

∫
.

D (Lebesgue’s dominated convergence theorem – dominated convergence). If
fn are measurable, fn → f and |fn| ≤ g with g µ-integrable, then∫

fn →
∫

f.

2. General measure and integral.
All this goes through much more generally, and is no harder in full gen-

erality. In Measure Theory, one has a measurable space (ΩA) as above (Ω
is the base space on which we work, A a σ-field of subsets of it – a class of
subsets closed under complements and countably many set-theoretic opera-
tions – unions ∪, intersections ∩ and set-theoretic differences \. A measure
µ is a non-negative set-function defined on A and countable additive:

µ(∪∞
n=1An) =

∞∑
n=1

µ(An)

for disjoint An ∈ A. A signed measure is a σ-additive set-function not re-
stricted to be non-negative; a signed measure can also be defined as the
difference of two measures (see below). Then (Ω,A, µ) is called a measure
space.

The integral
∫
fdµ is defined just as the Lebesgue integral is defined, but

in place of λ((a, b]) one has µ(A), where A runs through a class of sets A ∈ A
big enough to generate the whole σ-algebra A. Then everything said above

3



about the Lebesgue integral (w.r.t. Lebesgue measure λ) extends verbatim
to this case, with

∫
fdµ in place of

∫
f =

∫
fdλ.

When µ is a measure of total mass 1, µ(Ω) = 1, µ is called a probability
measure (= probability), usually written P , and then (Ω,A,P) is called a
probability space; the base space Ω is called the sample space. The points
ω ∈ Ω are called the sample points, and indicate the randomness present.
There are two prototypes:
1. Tossing a fair coin. Write 1 for ‘head’, 0 for ‘tail’. Ω = {0, 1}; A is the
power set of Ω (class of all subsets – there are 22 = 4 here, as Ω has 2 points);
µ({0}) = µ({1}) = 1/2.
2. Drawing a random number from [0, 1]. Here Ω = [0, 1], A is the σ-field
of (Lebesgue-) measurable sets in [0, 1], P = λ is Lebesgue measure (so here
probability = length). This gives us the Lebesgue probability space, [0, 1] for
short. Similarly for drawing two random numbers from [0, 1] independently
(here probability = area, in the unit square), or three (here probability = vol-
ume, in 3-space). Similarly also for drawing n such numbers independently,
leading to Lebesgue measure in n-space.

It turns out that one can ‘let n → ∞’ here, and model drawing infinitely
many random numbers independently from [0, 1]. Remarkably, it also turns
out that this gives us the Lebesgue probability space above (see below).

If µ is a measure and

ν(A) :=
∫
A
fdµ

for some measurable function f ≥ 0, then Q(A) ≥ 0 for all A ∈ A (Q is
non-negative), and if A = ∪∞

n=1An with An ∈ A disjoint, then

ν(A) =
∫
A
fdµ =

∫
IAfdµ =

∫ ∑
n

IAndµ =
∑∫

Am
fdµ =

∑
ν(An) :

ν is σ-additive. So ν is a measure. Also, if µ(A) = 0, then also ν(A) =∫
A fdµ = 0, as any integral over a set of measure 0 is 0. So µ(A) = 0 implies
ν(A) = 0. We write this as

ν << µ,

and say that ν is absolutely continuous w.r.t. µ.
It turns out that this is the only way in which absolute continuity can

arise: ν << µ iff ν =
∫
fdµ for some measurable f ≥ 0. This is the Radon-

Nikodym theorem (RN), which we quote; then f is called the Radon-Nikodym
derivative of ν w.r.t. µ, written

f = dν/dµ.
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Thus formally,

ν(A) =
∫
A
dν =

∫
A

dν

dµ
dµ =

∫
A
fdµ.

If both ν << µ and µ << ν, we call the measures µ and ν equivalent. Then
both RN derivatives exist, and

dν/dµ = 1/(dµ/dν).

In this case, µ and ν have the same null sets.

3. Probability
In a probability space, we call the measurable functions random variables.

Recall from your first course in Probability Theory that for a random variable
X we define its distribution function F (or FX) by

F (x) := P ({ω : X(ω) ≤ x}), or P (X ≤ x) (x ∈ R).

The measurability restriction is exactly the same as requiring that the dis-
tribution function F be defined.

In a measurable space, we also call the integral the expectation, E. Thus
for a random variable (rv) X,

E[X], or EX :=
∫
Ω
X(ω)dP (ω) or

∫
XdP.

The expectation is a real number, and has the interpretation of a weighted
average of the values of the rv X, weighted according to their probability.
The two prototypical cases here are:
(i) Discrete case. Here X takes values xn (finitely or countably many), with
probabilities f(xn) > 0. Then

P (A) =
∑

n:xn∈A
f(xn), EX =

∑
n

xnf(xn)

(the series must be absolutely convergent, or the expectation is not defined –
this restriction is needed, to ensure linearity of expectation).
(ii) Density case. Here X takes values in some interval (or half-line, or the
whole line),

P (A) =
∫
A
f(x)dx, F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du, EX =

∫ ∞

−∞
xf(x)dx
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for some f ≥ 0 which integrates to 1. Then f is called the (probability)
density (function) of F , X.

We recall some basic examples. The first two are discrete; the last three
have densities.
Binomial distribution, B(n, p). For p ∈ [0, 1] (or (0, 1) to exclude trivialities),
q := 1− p,

P (X = k) =

(
n

k

)
pkq

n−k (k = 0, 1, . . . , n).

Then (check) EX = np, var X = npq (here the variance, or variability, is
var X := E[(X − EX)2], and then var X = E[X2] − (EX)2). Then X
models the number of heads in a n independent tosses of a biased coin that
falls heads with probability p (so tails with probability q). The case n = 1 is
called the Bernoulli distribution, B(p).
Poisson distribution, P (λ). For k = 0, 1, 2, . . .,

P (X = k) = e−λλk/k!

Then (check) EX = λ, var X = λ.
Uniform distribution, U(a, b). This has density f(x) = 1/(b − a) on [a, b], 0
elsewhere. Then (check) EX = (a+ b)/2, var X = (b− a)2/12. The special
case U(0, 1) has f(x) = I[0,1], so for 0 ≤ a ≤ b ≤ 1,

P (a ≤ X ≤ b) = b− a :

probability = length. This gives the Lebesgue probability space above, and
models drawing a random number uniformly from [0, 1].
Exponential distribution, E(λ), for λ > 0. This has

f(x) = λe−λx, F (x) = P (X ≤ x) = 1− e−λx (x ≥ 0), EX = 1/λ.

Normal distribution N(µ, σ2). This has density

f(x) =
1

σ
√
2π

exp{−1

2
(x− µ)2/σ2}.

Then (check) EX = µ, varX = σ2. The special case µ = 0, σ = 1 is called
the standard normal, N(0, 1) = Φ, with density ϕ:

ϕ(x) =
1√
2π

e−x2/2, Φ(x) = P (X ≤ x) =
∫ x

−∞
ϕ(u)du.
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4. Stieltjes integrals.
In both the Riemann integral and the Lebesgue integral, intervals (a, b]

played a major role, and we used that they have length b − a. The ”dx” in∫
f(x)dx (Riemann or Lebesgue) comes from this. We now generalize this.
Suppose that F is a non-decreasing function. Then F can have at worst

jump discontinuities; we take F to be right-continuous at any jump points.
We replace the length b−a of (a, b] by F (b)−F (a). This gives a set-function
µF , defined by

µF ((a, b]) := F (b)− F (a).

If in the Riemann integral we replace lower R-sums
∑

mi(xi+1 − xi) by∑
mi(F (xi+1) − F (xi)), and similarly for upper R-sums, we obtain an ex-

tension of the R-integral, called the Riemann-Stieltjes integral or RS-integral
(Thomas STIELTJES (1856- 1894) in 1894/5). It is written

∫ b
a f(x)dF (x);

here f is called the integrand, F the integrator. Care is needed if both in-
tegrand and integrator can have common points of discontinuity. We shall
need to allow F to have jumps; we restrict to f continuous accordingly.

If in the definition of the measure-theoretic integral we take µ to be µF

on half-open intervals (a, b] as above, and then construct the integral as with
the Lebesgue integral but with µF ((a, b]) := F (b) − F (a) in place of b − a,
we obtain the Lebesgue-Stieltjes integral or LS-integral.

Such Stieltjes integrals are important in Probability Theory. A random
variable (rv) (X say) has a (probability) distribution function, F (= FX).
Then the LS-integral

∫
g(x)dF (x) has the interpretation of an expectation,

Eg(X) of the function g(X) of the rv X.
Signed measures.

While length/area/volume, probability and (gravitational) mass are all
non-negative, electrostatic charge can have either sign. A signed measure is a
countably additive set function (not necessarily non-negative). The measure
theory of signed measures is fairly simple: a signed measure µ can be written
uniquely as

µ = µ+ − µ−,

where µ± are measures, with disjoint supports (the support of a measure is
the largest set whose complement is null). This is the Hahn-Jordan theorem
(Hans HAHN (1879-1934) in 1948, posth., Camille JORDAN (1838-1922) in
1881).

We can extend the LS integral from non-decreasing integrands F to

F = F1 − F2
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that are the difference of two non-decreasing functions, in the obvious way:∫
fdF :=

∫
fdF1 −

∫
fdF2

(both terms on the right must be finite – we must avoid ‘∞−∞’). This gives
the LS integral with integrator the F , or the corresponding signed measure
(cf. the Hahn-Jordan theorem).

So suitable integrators are differences of monotone functions. But how
do we recognize them? For an interval [a, b] , let P be a partition:

a = x0 < x1 < . . . < xn = b.

For a function F , the variation of F over the partition P is

var(F,P) :=
∑

|F (xi+1 − F (xi)|.

Call F of finite variation (FV) on [a, b] if

var[a,b]F := sup{var(F,P)} < ∞,

where P varies over all partitions. Of course, monotone functions are of
FV: if F is monotone, var(F,P) = |F (b)− F (a)|, so taking the sup over P ,
var[a,b]F = |F (b)− F (a)|. Of course also, we need to restrict to finite inter-
vals (or compact sets): the case F (x) ≡ x generating Lebesgue measure is
the prototype, but x, though of FV on finite intervals, has infinite variation
over the real line. We quote:

Theorem (Jordan, 1881). The following are equivalent:
(i) F is the difference of two monotone functions;
(ii) F is of finite variation (FV) on intervals [a, b].

Later we will encounter stochastic integrals
∫
hdX, where both the inte-

grand h and the integrator X are random (stochastic processes). These will
be of two types: X of FV, when we can use LS-integrals as above, and X
not FV (e.g.: Brownian motion, Ch. II) when we will need an entirely new
kind of integral, the Itô integral (Ch. III).
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