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Theorem (Brownian Martingale Representation Theorem). LetM =
(M(t))t≥0 be a RCLL local martingale with respect to the Brownian filtration
(Ft). Then

M(t) = M(0) +
∫ t

0
H(s)dW (s), t ≥ 0

withH = (H(t))t≥0 a progressively measurable process such that
∫ t
0 H(s)2ds <

∞, t ≥ 0 with probability one. That is, all Brownian local martingales may
be represented as stochastic integrals with respect to Brownian motion (and
as such are continuous).

As mentioned above, the economic relevance of the representation theo-
rem is that it shows that the Black-Scholes model is complete – that is, that
every contingent claim (modelled as an appropriate random variable) can
be replicated by a dynamic trading strategy. Mathematically, the result is
purely a consequence of properties of the Brownian filtration. The desirable
mathematical properties of BM are thus seen to have hidden within them
desirable economic and financial consequences of real practical value.

The next result, which is an example for the rich interplay between prob-
ability theory and analysis, links stochastic differential equations (SDEs)
with partial differential equations (PDEs). Such links between probability
and stochastic processes on the one hand and analysis and partial differen-
tial equations on the other are very important, and have been extensively
studied. Suppose we consider a stochastic differential equation,

dX(t) = µ(t,X(t))ds+ σ(t,X(t))dW (t) (t0 ≤ t ≤ T ), X(t0) = x.

For suitably well-behaved functions µ, σ, this stochastic differential equation
will have a unique solution X = (X(t) : t0 ≤ t ≤ T ). Taking existence of
a unique solution for granted for the moment, consider a smooth function
F (t,X(t)) of it. By Itô’s lemma,

dF = Ftdt+ FxdX +
1

2
Fxxd⟨X⟩,

and as d⟨X⟩ = ⟨µdt+ σdW ⟩ = σ2d⟨W ⟩ = σ2dt, this is

dF = Ftdt+Fx(µdt+ σdW )+
1

2
σ2Fxxdt = (Ft +µFx +

1

2
σ2Fxx)dt+ σFxdW.
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Now suppose that F satisfies the partial differential equation

Ft + µFx +
1

2
σ2Fxx = 0

with boundary condition,
F (T, x) = h(x).

Then the above expression for dF gives

dF = σFxdW,

which can be written in stochastic-integral rather than stochastic-differential
form as

F (s,X(s)) = F (t0, X(t0)) +
∫ s

t0
σ(u,X(u))Fx(u,X(u))dW (u).

Under suitable conditions, the stochastic integral on the right is a martingale,
so has constant expectation, which must be 0 as it starts at 0. Then

F (t0, x) = E (F (s,X(s))|X(t0) = x).

For simplicity, we restrict to the time-homogeneous case: µ(t, x) = µ(x) and
σ(t, x) = σ(x), and assume µ and σ Lipschitz, and h ∈ C2

0 (h twice continu-
ously differentiable, with compact support). Then the stochastic integral is
a martingale, and replacing t0, s by t, T we get the stochastic representation
F (t, x) = E (F (X(T ))|X(t) = x) for the solution F . Conversely, any solu-
tion F which is in C1,2 (has continuous derivatives of order one in t and two
in x) and is bounded on compact t-sets arises in this way. This gives:

Theorem (Feynman-Kac Formula. For µ(x), σ(x) Lipschitz, the solution
F = F (t, x) to the partial differential equation

Ft + µFx +
1

2
σ2Fxx = 0

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = E [h(X(T ))|X(t) = x],

where X satisfies the stochastic differential equation

dX(s) = µ(X(s))ds+ σ(X(s))dW (s) (t ≤ s ≤ T )
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with initial condition X(t) = x.
The Feynman-Kac formula gives a stochastic representation to solutions

of partial differential equations (e.g., the Black-Scholes PDE).
Application.

One classical application of the Feynman-Kac formula is to Kac’s proof
of Lévy’s arc-sine law for Brownian motion. Let τt be the amount of time in
[0, t] for which BM takes positive values. Then the proportion τt/t has the

arc-sine law - the law on [0, 1] with density 1/(π
√
x(1− x)) (x ∈ [0, 1]).

5. Stochastic Differential Equations
Perhaps the most basic general existence theorem for SDEs is Picard’s

theorem, for an ordinary differential equation (non-linear, in general)

dx(t) = b(t, x(t))dt, x(0) = x0,

or to use its alternative and equivalent expression as an integral equation,

x(t) = x0 +
∫ t

0
b(s, x(s))ds.

If one assumes the Lipschitz condition

|b(t, x)− b(t, y)| ≤ K|x− y|

for some constant K and all t ∈ [0, T ] for some T > 0, and boundedness
of b on compact sets, one can construct a unique solution x by the Picard
iteration

x(0)(t) := x0, x(n+1)(t) := x0 +
∫ t

0
b(s, x(n)(s))ds.

See any textbook on analysis or differential equations. (The result may also
be obtained as an application of Banach’s contraction-mapping principle in
functional analysis.)

Naturally, stochastic calculus and stochastic differential equations contain
all the complications of their non-stochastic counterparts, and more besides.
Thus by analogy with PDEs alone, we must expect study of SDEs to be
complicated by the presence of more than one concept of a solution. The
first solution concept that comes to mind is that obtained by sticking to the
non-stochastic theory, and working pathwise: take each sample path of a
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stochastic process as a function, and work with that. This gives the concept
of a strong solution of a stochastic differential equation. Here we are given
the probabilistic set-up – the filtered probability space in which our SDE
arises – and work within it. The most basic results, like their non-stochastic
counterparts, assume regularity of coefficients (e.g., Lipschitz conditions),
and construct a unique solution by a stochastic version of Picard iteration.
Consider the stochastic differential equation

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), X(0) = ξ,

where b(t, x) is a d-vector of drifts, σ(t, x) is a d×r dispersion matrix, W (t) is
an r-dimensional Brownian motion, ξ is a square-integrable random d-vector
independent of W , and we work on a filtered probability space satisfying
the usual conditions on which W and ξ are both defined. Suppose that the
coefficients b, σ satisfy the following global Lipschitz and growth conditions:

∥b(t, x)− b(t, y)∥+ ∥σ(t, x)− σ(t, y)∥ ≤ K∥x− y∥,

∥b(t, x)∥2 + ∥σ(t, x)∥2 ≤ K2(1 + ∥x∥2),

for all t ≥ 0, x, y ∈ Rd, for some constant K > 0.
Theorem. Under the above Lipschitz and growth conditions,
(i) the Picard iteration X(0)(t) := ξ,

X(n+1)(t) := ξ +
∫ t

0
b(s,X(n)(s))ds+

∫ t

0
σ(s,X(n)(s))dW (s)

converges, to X(t) say;
(ii) X(t) is the unique strong solution to the stochastic differential equation

X(0) = ξ, X(t) = ξ +
∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s);

(iii) X(t) is square-integrable, and for each T > 0 there exists a constant C,
depending only on K and T , such that X(t) satisfies the growth condition

E
(
∥X(t)∥2

)
≤ C

(
1 + E

(
∥ξ∥2

))
eCt (0 ≤ t ≤ T ).

Unfortunately, it turns out that not all SDEs have strong solutions. How-
ever, in many cases one can nevertheless solve them, by setting up a filtered
probability space for oneself, setting up an SDE of the required form on it,

4



and solving the SDE there. The resulting solution concept is that of a weak
solution. Naturally, weak solutions are distributional, rather than pathwise,
in nature. However, it turns out that it is the weak solution concept that is
often more appropriate for our purposes. This is particularly so in that we
will often be concerned with convergence of a sequence of (discrete) finan-
cial models to a (continuous) limit. The relevant convergence concept here
is that of weak convergence. In the continuous setting, the price dynamics
are described by a stochastic differential equation, in a discrete setting by a
stochastic difference equation. One seeks results in which weak solutions of
the one converge weakly to weak solutions of the other.
The Ornstein-Uhlenbeck Process.

The most important example of a stochastic differential equation for us
is that for geometric Brownian motion. We close here with another example.

Consider a model of the velocity V (t) of a particle at time t (V (0) = v0),
moving through a fluid or gas, which exerts a force on the particle:
(i) a frictional drag, assumed proportional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas.
The basic model for processes of this type is given by the (linear) stochastic
differential equation

dV = −βV dt+ σdW,

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
σ2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) (this is
the classical Maxwell-Boltzmann distribution of statistical mechanics) and
whose limiting correlation function is e−β|.|.

If we integrate the Ornstein-Uhlenbeck velocity process to get the Ornstein-
Uhlenbeck displacement process, we lose the Markov property (though the
process is still Gaussian). Being non-Markov, the resulting process is much
more difficult to analyze.

The Ornstein-Uhlenbeck process is important in many areas, including:
(i) statistical mechanics, where it originated,
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates.

e−βt solves the corresponding homogeneous DE dV = −βV dt. So by
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variation of parameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +∫ t
0 e

βudW . So with initial velocity v0,

V = v0e
−βt + σe−βt

∫ t

0
eβudWu.

This approach to solving linear SDEs can be generalized.

6. Semi-martingales.
The martingale concept, though crucial, is a little too restrictive, and

one needs to generalize it. We will be brief here. First, a local martingale
M = (M(t)) is a process such that, for some sequence of stopping times
Sn → ∞, each stopped process M (n) = (M(t ∧ Sn)) is a martingale. This
localization idea can be applied elsewhere: a process (A(t)) (adapted to our
filtration, understood) is locally of finite variation if each (A(t∧Sn)) is of finite
variation for some sequence of stopping times Sn → ∞. A semi-martingale
(Meyer, 1976) is a process (X(t)) expressible as

X(t) = M(t) + A(t)

with (M(t)) a local martingale and (A(t)) locally of finite variation (the con-
cept is due to Meyer).
Lévy Processes as Semi-martingales.

The Gaussian component X(1) is a martingale; so too is the compensated
sum of (small) jumps process X(3), while the sum of large jumps process X(2)

is (locally) of finite variation, being compound Poisson. Thus a Lévy process
X = X(1) +X(2) +X(3) is a semi-martingale. Indeed, Lévy processes are the
prototypes, and motivating examples, of semi-martingales. The natural do-
main of stochastic integration is predictable integrands and semi-martingale
integrators. Thus, stochastic integration works with a general Lévy process
as integrator. Here, however, the theory simplifies considerably.
Previsible (= Predictable) Processes.

The crucial difference between left-continuous (e.g., càglàd) functions and
right-continuous (e.g., càdlàg) ones is that with left- continuity, one can ‘pre-
dict’ the value at t – ‘see it coming’ – knowing the values before t.

We write P, called the predictable (or previsible) σ-algebra, for the σ-
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algebra on R+ × Ω (R+ for time t ≥ 0, Ω for randomness ω ∈ Ω – we need
both for a stochastic process X = (X(t, ω))) for the σ-field generated by (=
smallest σ-field containing) the adapted càglàd processes. (We shall almost
always be dealing with adapted processes, so the operative thing here is the
left-continuity.) We also write X ∈ P as shorthand for ‘the process X is
P-measurable’, and X ∈ bP if also X is bounded.
Predictability and Semi-Martingales.

Let us confess here why we need to introduce the last two concepts. One
can develop a theory of stochastic integrals,

∫ t
0 H(s, ω)dM(s, ω) or

∫ t
0 HsdMs,

where H, M are stochastic processes and the integrator M is a semimartin-
gale, the integrand H is previsible (and bounded, or L2, or whatever). This
can be done; see e.g. [P] for details. More: this theory is the most general
theory of stochastic integration possible, if one demands even reasonably good
properties (appropriate behaviour under passage to the limit, for example).
For emphasis:

Integrands: previsible; Integrators: semimartingales.

Prototype: H is left-continuous (and bounded, or L2, etc.); M is BM.
Economic Interpretation. Think of the integrator M as, e.g., a stock-price
process. The increments over [t, t+u] (u > 0, small) represent ‘new informa-
tion’. Think of the integrand H as the amount of stock held. The investor
has no advance warning of the price change Mt+dt −Mt over the immediate
future [t, t + dt], but has to commit himself on the basis of what he knows
already. So H needs to be predictable at H before t (e.g., left- continuity will
do), hence predictability of integrands. By contrast, Mt+dt −Mt represents
new price-sensitive information, or ‘driving noise’. The value process of the
portfolio is the limit of sums of terms such as Ht−(Mt+dt−Mt), the stochastic
integral

∫ t
0 HsdMs. This is the continuous-time analogue of the martingale

transform in discrete time.
Poisson Stochastic Calculus.

Recall that the prototypes of Lévy processes are Brownian motion and the
Poisson process, also that the essence of Itô calculus for BM is (dWt)

2 = dt.
Now the Poisson process N is a point process with jumps of size 1, so
(dNt)

2 = dNt (both sides are 1 at a jump and 0 elsewhere). This suggests
that a Poisson-based stochastic calculus can be developed, and indeed it can.
Lévy stochastic calculus.

With both Brownian and Poissonian calculus to hand, this suggests that
stochastic calculus for Lévy processes can be developed – and indeed it can.

7



For, Lévy processes are semimartingales, and we saw above that stochas-
tic calculus has as its natural domain that of predictable integrands and
semimartingale integrators. The resulting Lévy calculus is very flexible and
useful, but we cannot develop it here. It extends Black-Scholes theory to al-
low prices to have jumps, which they do in reality if looked at closely enough.
Lévy finance.

We close with some comments on the use of Lévy processes for mod-
elling in mathematical finance. There are three main objections to the use
of Brownian-based models, as in Black-Scholes theory.
(i) Gaussian distributions are symmetric, and have extremely thin tails. Real
financial data show skew, and have much fatter tails than Gaussian. For ex-
ample, with return distributions on stock, the tail behaviour depends on the
length of the return interval. For monthly returns, say, returns are approxi-
mately Gaussian. This is because of aggregational Gaussianity: the Central
Limit Theorem applies. The rule of thumb is that 16 trading days suffice here.
High-frequency (‘tick’) data typically gives heavy tails – tails decreasing like
a power; daily returns are intermediate (e.g., hyperbolic distributions).
(ii) Brownian models are complete (see the Brownian Martingale Represen-
tation Theorem, above). Real markets are incomplete. One can see this in,
e.g., the bid-ask spread – real prices are not unique, but fill an interval.
(iii) Brownian motion is continuous, but real prices jump. This is partly be-
cause prices are quoted in terms of money, which is quantised. Also, the very
act of trading shifts prices, as it affects the current balance of supply and
demand. In Black-Scholes theory, one assumes that financial agents are price
takers and not price makers – true to a good approximation for small traders
(or small trades), but not for large ones. Where there is no trading, there is
no price. Where there is trading, there are prices rather than a price. Take,
for instance, the price evolution of a heavily traded (and so highly liquid)
stock under normal market conditions. There will be very many individu-
ally small trades, resulting in what is called jitter. Lévy processes of infinite
activity – infinitely many jumps in finite time – are well suited to modelling
such things. What was once pure Probability Theory for its own sake has
now become an everyday modelling tool for the financial practitioner.

The mathematics of markets under crisis conditions is of course very in-
teresting and topical, but we cannot develop it here.

NHB, March 2012
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