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5. Modes of convergence.

We need (at least) four modes of convergence – two strong, one interme-
diate, one weak. We begin with the strong modes.

We say that Xn → X almost surely, or a.s., if Xn → X with probability
1: P (Xn → X) = 1. For p > 0, we write Lp for the space of random
variables X with E[|X|p] <∞, and for X ∈ Lp write

∥X∥p := [E(|X|p)]1/p.

This is a norm, so also by a metric. For Xn, X ∈ Lp, we say Xn → X in Lp,
or in pth mean, if ∥Xn − X∥p → 0. By the Riesz-Fischer theorem (quote),
Lp is complete: if ∥Xm−Xn∥p → 0 as m,n→ ∞, then there is some X ∈ Lp

such that Xn → X in Lp.
Neither of these two strong modes of convergence implies the other.

For the intermediate mode, we say that Xn → X in probability if for all
ϵ > 0,

P (|Xn −X| > ϵ) → 0 (n→ ∞).

Each of a.s. convergence and convergence in Lp implies convergence in prob-
ability, but not conversely.

Convergence in probability is also given by a metric:

d(X, Y ) := E
( |X − Y |
1 + |X − Y |

)
.

This metric is also complete.
Given any sequence Xn converging in pr, there exists some subsequence

converging a.s. (this also is due to F. Riesz in 1912). We quote this. Likewise,
any sequence Xn converging in pth mean has an a.s. convergent subsequence.
Convergence in distribution.

We turn now to the weak mode of convergence, which deals not with
values of the random variables as above but with their distributions. If
Xn, X are random variables with distribution functions Fn, F , we say that
Xn → X in distribution (or in law),

Xn → X in distribution, or Fn → F in distribution,

if

Ef(Xn) → Ef(X) (n→ ∞) for all bounded continous functions f ,
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equivalently, if ∫
f(x)dFn(x) →

∫
f(x)dF (x) (n→ ∞)

for all such f . This mode of convergence is is also generated by a metric, the
Lévy metric:

d(F,G) := inf{ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x}

(the French probabilist Paul LÉVY (1886-1971) in 1937) (it is not obvious,
but it is true, that d is a metric): if Fn, F are distribution functions,

Fn → F in distribution ⇔ d(Fn, F ) → 0.

This is also equivalent to

Fn(x) → F (x) (n→ ∞) at all continuity points x of F .

(The restriction to continuity points x of F here is vital: take Xn, X as
constants cn, c with cn → c. We should clearly have cn → c in distribution
regarded as random variables; the distribution function F of c is 0 to the left
of c and 1 at c and to the right; pointwise convergence takes place everywhere
except c.)

We quote that the Lévy metric is complete.
Convergence in probability (‘intermediate’) implies convergence in distri-

bution (‘weak’). We quote this.
There is no converse, but there is a partial converse. If Xn converges

in distribution to a constant c, then since the distribution function of the
constant c is 0 to the left of c and 1 at c and to the right, it is easy to see
that in fact Xn → c in probability.

6. Characteristic functions.
If X has distribution function F , the characteristic function (CF) of X is

ϕ(t) := EeitX =
∫ ∞

−∞
eitxdF (x) (t ∈ R).

This is also the Fourier-Stieltjes transform of F (‘Fourier transform, Stieltjes
integral’).

The CF has a number of important properties.
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1. Existence. The CF always exists (the integral defining it always con-
verges). Indeed,

|ϕ(t)| = |
∫
eitxdF (x)| ≤

∫
|eitx|dF (x) =

∫
1dF (x) = 1.

2. Continuity. The CF is continuous, indeed uniformly continuous:

|ϕ(t+ u)− ϕ(t)| = |
∫
eitx(eitu − 1)dF (x)| ≤

∫
|eitu − 1|.1dF (x) → 0

as t→ 0, by dominated convergence.
3. Uniqueness. The CF determines the distribution function uniquely (so
taking the CF loses no information). This is a general property of Fourier
transforms; we quote this.
4. Inversion formula. There is an inversion formula (due to Lévy, 1937)
giving the distribution function in terms of the CF. We omit this, as the
formula is rarely useful.
5. Continuity theorem (Lévy, 1937). (i) If Fn, F have CFs ϕn, ϕ, and Fn → F
in distribution, then

ϕn(t) → ϕ(t) (n→ ∞) uniformly in t on compact sets.

(ii) Conversely, if ϕn(t) → ϕ(t) pointwise, and the limit function ϕ(t) is
continuous at t = 0, then ϕ is the CF of a distribution function, F say, and
Fn → F in distribution.
6. Moments. For a random variable X, the kth moment of X is defined by

µk := E[Xk].

The first moment is the mean or expectation, µ = E[X]. (We use nota-
tion such as µX if there are other random variables present. Context will
show whether µ denotes a mean or a measure.) If X has k moments (fi-
nite), we can expand the exponential eitX in the definition of the CF and
get

∑k
j=0(it)

j.E[Xj]/j! or
∑k

j=0(it)
jµj/j!, plus an error term. Analogy with

Taylor’s Theorem in Real Analysis suggests that this error term should be
o(tk) at t → 0. This is true; we quote it: if X has k moments finite, its CF
satisfies

ϕ(t) =
k∑

j=0

(it)jµj/j! + o(tk) (t→ 0).

3



7. Independence.
Recall from your first course in Probability that events A, B are called

independent if
P (A ∩B) = P (A).P (B)

(independence corresponds to product measures). Since P (A) = EIA, this
says

E[IA.IB] = E[IA].E[IB].

We generalize this. A family of events is independent if for any finite sub-
family Ak (k = 1, . . . , n), the probability of the intersection of any subfamily
is the product of the probabilities. A family of random variables is indepen-
dent if, for any finite subfamily {Xk} (k = 1, . . . , n) and any xk, the events
{Xk ≤ xk} are independent; equivalently, the events {Xk ∈ Ak} are indepen-
dent for all measurable Ak.

Theorem (Multiplication Theorem). If X1, . . . , Xn are independent and
g1, . . . , gn are measurable,
(i) g1(X1), . . . , gn(Xn) are independent;
(ii) If the gk are bounded,

E[
n∏

k=1

gk(Xk)] =
n∏

k=1

Egk(Xk).

Proof. (i)

P (gk(Xk) ∈ Ak, k = 1, . . . , n) = P (Xk ∈ g−1
k (Ak), k = 1, . . . , n)

=
n∏

k=1

P (Xk ∈ g−1
k (Ak)) =

n∏
k=1

P (gk(Xk) ∈ Ak),

proving independence of the gk(Xk).
(ii) For simple gk, gk =

∑
ck,ikIAk,ik

,

E[
n∏

i=1

gi(Xi)] = E[
n∏

k=1

∑
ck,ikIAk,ik

(Xk)].

By independence, on the RHS E[
∏
I] = E[I(∩)] = P (∩) = ∏

P (.) =
∏
E[I].

The RHS thus factorizes, giving the result for simple gk. The result extends
to the general case by approximation. //
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Then the joint distribution function is given by

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi) =
n∏

i=1

Fi(xi),

where Fi is the distribution function of Xi. The Fi are called the marginal
distribution functions:

Random variables are independent iff their joint distribution function
factorizes into the product of the marginals.

Then

ϕ(t1, . . . , tk) =
∫
. . .

∫
exp{i(t1x1 + . . .+ tkxk}dF (x1, . . . , xn)

=
n∏

j=1

∫
exp{itjxj}dFj(xj) =

n∏
j=1

ϕj(tj) :

Random variables are independent iff their joint CF factorizes into the
product of the marginals.

Convolutions.
If X, Y are independent, with distribution functions F , G and CFs ϕ,

ψ, the distribution of their sum X + Y is called the convolution (German:
Faltung) of their distributions. If X+Y has distribution function H and CF
χ,

χ(t) := Eeit(X+Y ) = E[eitX .eitY ] = E[eitX ].E[eitY ] = ϕ(t).ψ(t),

by the Multiplication Theorem:

The CF of an independent sum is the product of the CFs.

So the CF turns the easy operation of adding independent random vari-
ables into the equally easy operation of multiplying CFs. By contrast, the
situation for distribution functions is less simple. If X, Y , X + Y have
distribution functions F , G, H,

H(z) := P (X + Y ≤ z) =
∫ ∫

{x+y≤z}
dF (x)dG(y).

So
H(z) =

∫
F (z − y)dG(y) =

∫
G(z − x)dF (x);
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we write either expression as (F ∗G)(z). When F , G have densities f , g, H
has density

h(x) =
∫
f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

In fact, if either of F , G has a density, so does F ∗G.
So by induction, if we add n independent random variables,

(i) the CFs multiply;
(ii) the distribution is a multiple convolution, involving n− 1 integrations.
As n increases, n− 1 integrations become intractable, so we use CFs.

Suppose now that X1, . . . , Xn, . . . are independent and identically dis-
tributed (iid) random variables, with distribution F , CF ϕ, mean µ and
variance σ2. Recall that the variance (variability) is a measure of random-
ness,

σ2 := E[(X−EX)2] = E[X2−2EX.X+(EX)2] = E[X2]−2EX.EX+[EX]2 :

var X = E(X2)− (EX)2.

(We know from the definition that var X ≥ 0; this also follows from the last
equation by the Cauchy-Schwarz inequality.)

8. The Weak Law of Large Numbers (WLLN) and the Central
Limit Theorem (CLT).

Recall that by Real Analysis,

(1 +
x

n
)n → ex (n→ ∞)

(this expresses compound interest, or exponential growth, as the limit of
simple interest as the interest is compounded more and more often). This
extends also to complex number z, and to zn → z:

(1 +
zn
n
)n → ez (n→ ∞).

The next result is due to Lévy in 1925, and in more general form to
the Russian probabilist A. Ya. KHINCHIN (1894-1956) in 1929 and to Kol-
mogorov in 1928/29.
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Theorem (Weak Law of Large Numbers, WLLN). If Xi are iid with
mean µ,

1

n

n∑
1

Xk → µ (n→ ∞) in probability.

Proof. If the Xk have CF ϕ(t), then as the mean µ exists ϕ(t) = 1+ iµt+o(t)
as t→ 0. So (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n = [1 +
iµt

n
+ o(1/n)]n,

for fixed t and n → ∞. By above, the RHS has limit eiµt as n → ∞. But
eiµt is the CF of the constant µ. So by Lévy’s continuity theorem,

(X1 + . . .+Xn)/n→ µ (n→ ∞) in distribution.

Since the limit µ is constant, by above this gives

(X1 + . . .+Xn)/n→ µ (n→ ∞) in probability. //

As the name implies, the Weak LLN can be strengthened, to the Strong
LLN (with a.s. convergence in place of convergence in probability). We turn
to this later, but proceed with a refinement of the method above, in which
we retain one more term in the Taylor expansion of the CF. Note first that
the CF of the standard normal distribution Φ = N(0, 1), with density ϕ(x)
and distribution function Φ(x)

ϕ(x) :=
e−x2/2

√
2π

, Φ(x) :=
∫ x

∞
ϕ(u)du

is e−t2/2. The easiest way to show this is to show∫ +∞

−∞
etx.e−x2/2dx/

√
2π = et

2/2

by completing the square, and then replace t by it by analytic continuation
to get, for real t, ∫ +∞

−∞
eitx.e−x2/2dx/

√
2π = e−t2/2

Or, one can use contour integration and Cauchy’s theorem. For both meth-
ods, see e.g. Bingham and Fry [BF], p. 21.
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Theorem (Central Limit Theorem, CLT). If X1, . . . Xn, . . . are iid with
mean µ and variance σ2, and Sn := X1 + . . .+Xn, then

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n→ ∞) in distribution.

Proof. When we subtract µ from each Xk, we change the mean from µ to
0 and the second moment from µ2 to the variance σ2. So by the moments
property of CFs, Xk−µ has CF 1− 1

2
σ2t2+o(t2) as t→ 0. SoX1+. . .+Xn−nµ

has CF

E exp{it(X1 + . . .+Xn − nµ)} = [1− 1

2
σ2t2 + o(t2)]n (t→ 0).

Replace t by t/(σ
√
n) and let n→ ∞:

E exp{it(X1+. . .+Xn−nµ)/(σ
√
n)} = [1−1

2
.
t2

n
+o(1/n)]n → exp{−t2/2} (n→ ∞),

by above. The left is the CF of (Sn − nµ)/(σ
√
n); the right is the CF of

Φ = N(0, 1). By the continuity theorem for CFs, this gives

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n→ ∞) in distribution. //

The first result of this kind is the WLLN for Bernoulli trials (tossing a
coin that falls heads with probability p, tails with probability q := 1− p, due
to Jakob BERNOULLI (1654-1705); Ars conjectandi, 1713, posth.) The gen-
eral WLLN above, and its strengthening the SLLN below, constitute precise
forms of the ‘Law of Averages’, known to the man in the street. The CLT
for Bernoulli trials is due to Abraham de MOIVRE (1667-1754), Doctrine
of Chances 1738 (de Moivre found the normal distribution in 1733), later
extended by P. S. de LAPLACE (1749-1827), Théorie Analytiques des Prob-
abilités, 1812. The general CLT is due to J. W. LINDEBERG (1876-1932)
in 1922 (the name ‘central limit theorem’ is due to Pólya, also in 1922). The
CLT is the precise form of the ‘Law of Errors’, known to the physicist in the
street as saying ‘errors are normally distributed about the mean’.
Note. 1. The CLT largely explains why the normal distribution is so ubiqui-
tous in Statistics – basically, this is why Statistics works.
2. The CLT and the normal distribution are static. We shall need their
dynamic counterparts. The stochastic process (dynamic counterpart) corre-
sponding to the normal distribution is Brownian motion (Ch. II); that of the
CLT is the Erdös-Kac-Donsker invariance principle.
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