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9. The Borel-Cantelli lemmas and the zero-one law.
First, recall from Real Analysis the definition of the upper and lower

limit, lim sup and lim inf, of a real sequence xn:

lim sup xn := inf
n

sup
k≥n

xk,= lim
n

sup
k≥n

xk

(the inf here is a lim as the sequence supk≥n xk is decreasing), and dually

lim inf xn := sup
n

inf
k≥n

xk,= lim
n

inf
k≥n

xk.

Then lim sup xn = +∞ iff xn is not bounded above, while if xn is bounded
above, lim supxn is the unique real c such that for all ϵ > 0

xn ≤ c+ ϵ for all large enough n, xn ≥ c− ϵ for infinitely many n,

and dually for lim inf. For background, see any good book on Real Analysis.
There is an exact analogy of this for sets, with union replacing sup and

intersection replacing inf, for sets An rather than reals xn. Write ‘i.o.’ for
‘infinitely often’.

lim supAn := ∩n ∪k≥n Ak = {x : x ∈ Ani.o} or {Ani.o.},

lim inf An = ∪n ∩k≥n Ak = {An for all sufficiently large n}.

Then for the indicator functions, one has (check)

lim sup IAn = Ilim supAn , lim inf IAn = Ilim inf An .

Note. Write f = O(g) for f/g bounded, f = o(g) for f/g → 0 (the notation
is due to Edmund LANDAU (1877-1938)). By systematic use of the Lan-
dau O, o notation, and of limsup and liminf, one can eliminate all but the
essential ϵ > 0 from Analysis. One should do so: Analysis well done never
uses a superfluous ϵ; then the ϵs that one meets are the signature of the hard
proofs.

The following results are due to Borel in 1909, F. P. CANTELLI (1906-
1985) in 1917.
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Theorem (Borel-Cantelli lemmas). If An are events, A := lim supAn =
{An i.o.}:
(i) If

∑
P (An) < ∞, then P (A) = 0.

(ii) If
∑

P (An) = ∞ and the An are independent, then P (A) = 1.

Proof. (i) A = lim supAn = ∩n ∪∞
m=n Am, so A ⊂ ∪∞

m=nAm for each n. So

P (A) ≤ P (∪∞
m=nAm) ≤

∞∑
m=n

P (Am) → 0 (n → ∞)

(tail of a convergent series): P (A) = 0.
(ii) By the De Morgan laws, Ac = ∪n ∩∞

m=n A
c
m. But for each n

P (∩∞
m=nA

c
m) = lim

N
P (∩N

m=nA
c
m) (σ-additivity)

=
N∏

m=n

(1− P (Am)) (independence)

≤
N∏

m=n

exp{−P (Am)} (1− x ≤ e−x for x ≥ 0)

= exp{−
N∑

m=n

P (Am)} → 0 (N → ∞),

as
∑

P (An) diverges. So ∩∞
m=nA

c
m) is null. So their union Ac = ∪n ∩∞

m=n A
c
m

is null, giving the result. //

Corollary (Zero-One Law). If theAn are independent andA := lim supAn,
P (A) = 0 or 1 according as

∑
P (An) converges or diverges.

10. Infinite product measures; replication and copies.

Independence corresponds to product measures; the construction of the
product measure of two measure extends to finite products of measures by
induction. We now consider the extension to infinite products. This will
model generation of a sequence of independent identically distributed (iid)
random variables, called replications or copies. Think of repeatedly tossing
a coin, or repeatedly sampling in Statistics.

In fact the construction is a special case of a much more general construc-
tion (in which independence is not assumed), called the Daniell-Kolmogorov
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theorem, which we shall meet later in connection with Stochastic Processes
(Ch. II). But for now, consider a sequence of measure spaces (Ωn,An, µn),
n = 1, 2, . . .). We form the cartesian product Ω := Ω1×. . .×Ωn×. . .; thus Ω is
the set of points ω = (ω1, . . . , ωn, . . .) – sequences whose nth elements ωn is in
Ωn. Call a set A ⊂ Ω a cylinder set if it is of the form A = A1× . . .×An× . . .,
with all but finitely many of the An, say An1 , . . . , Ank

, equal to Ωn. Define a
measure µ on the class C of such cylinder sets by

µ(A) := µn1(An1)× . . .× µnk
(Ank

)

(thus µ(A) expresses independence on the cylinder sets). The measure µ
extends uniquely to a measure on the σ-field A := σ(C) generated by the
cylinder sets. The resulting probability space is called the infinite product of
the coordinate probability spaces, written

(Ω,A, µ) = ×∞
n=1(Ωn,An, µn).

Example: Infinite coin tossing and the uniform distribution.
Take the Lebesgue probability space ([0, 1],L, µ) modelling the uniform dis-
tribution U [0, 1] on the unit interval (probability = length). For a random
variable X ∼ U [0, 1], take its dyadic expansion

X =
∞∑
1

ϵn/2
n.

Thus ϵ1 = 0 iff X ∈ [0, 1/2), 1 iff X ∈ [1/2, 1) (or [1/2, 1]: we can omit 1,
as it carries 0 probability). If ϵ1, . . . , ϵn−1 are already defined, on the dyadic
intervals [k/2n−1, (k + 1)/2n−1), split each interval into two halves: ϵn = 0
on the left half, 1 on the right half. This construction shows inductively
that ϵ1, . . . , ϵn are independent, coin-tossing random variables (Bernoulli with
parameter 1/2), for each n. So the ϵn are independent coin-tosses.

Conversely, given ϵn independent coin tosses, form X :=
∑∞

1 ϵn/2
n. Then

Xn :=
∑n

1 ϵk/2
k → X a.s. The distribution function of Xn has jumps 1/2n

at k/2n, k = 0, 1, . . . , 2n − 1. This ‘saw-tooth jump function’ converges to x
on [0, 1], the distribution function of U [0, 1]. So X ∼ U [0, 1]. So:

If X =
∑∞

1 ϵn/2
n, X ∼ U [0, 1] iff ϵn are independent coin tosses.

So the Lebesgue probability space models both length on the unit inter-
val and infinitely many independent coin tosses. Incidentally, this shows
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that the hard Measure Theory content of construction of Lebesgue measure
(Carathéodory’s Extension Theorem, which we have quoted) is the same
as that of the construction of the infinite product space for repeated coin
tossing (which we have sketched above, and referred forward to the Daniell-
Kolmogorov theorem – which we shall also quote).

The mathematics above yields infinite replication of coin-tosses ϵn from
the uniform distribution U [0, 1]. Take the ϵn, and rearrange them into a
two-suffix array ϵjk (as with Cantor’s proof of 1873 that the rationals are
countable). The ϵjk are all independent, so the Xj :=

∑
ϵjk/2

k are indepen-
dent, and U [0, 1] by above. So from one U(0, 1), we get in this way infinitely
many copies.

If F is a distribution function (right-continuous; increasing from 0 at −∞
to 1 at ∞), define its (left-continuous) inverse function by

F−1(t) := inf{F (x) ≥ t} (0 < t < 1).

Then if U ∼ U [0, 1], X := F−1(U) ∼ F . For, {X ≤ x} = {F−1(U) ≤ x} =
{U ≤ F (x)}, which has probability F (x) as U is uniform. By this means
(called the probability integral transformation) we can pass from generating
copies from the uniform distribution (say by Monte Carlo simulation) to
generating copies from the distribution F . Since by above we can use one
uniform to generate a sequence of independent copies of uniforms, we may
then generate a sequence of independent copies drawn from F . In particular,
from one uniform we can generate an infinite sequence of copies of standard
normals. We shall see in Ch. II that from this we can generate Brown-
ian motion, the prototypical stochastic process. So the Lebesgue probability
space, from which we can draw a uniform, is all we need – e.g. to generate
Brownian motion. So everything rests on Lebesgue measure (as it should!)

11. The Strong Law of Large Numbers
Chebyshev’s inequality.

The next result is due to P. L. CHEBYSHEV (1821-1984) in 1867. Kol-
mogorov’s inequality below (A. N. KOLMOGOROV (1903-1987) in 1925)
reduces to it when n = 1.

Theorem (Chebychev’s inequality). If X has mean µ and variance σ2,
and ϵ > 0,

P (|X − µ| ≥ ϵ) ≤ σ2/ϵ2.
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Proof.

σ2 =
∫
Ω
|X − µ|2dP ≥

∫
|X−µ|≥ϵ

|X − µ|2dP ≥ ϵ2P (|X − µ| ≥ e). //

Theorem (Kolmogorov’s Inequality). If (Xn)
∞
1 are independent random

variables with mean 0 and finite variance, then for all ϵ > 0

P (maxnr=1|X1 + . . .+Xr| > ϵ) ≤ 1

ϵ2

n∑
r=1

var(Xr).

Proof. Write

A := {maxnr=1|X1+. . .+Xr| > ϵ}, Ar := {|X1+. . .+Xs| ≤ ϵ (s < r), |X1+. . .+Xr| > ϵ}.

Then A1, . . . , An are disjoint with union A. Write Ir := IAr ; by definition of
Ar and independence, Ir, Xr+1, . . . , Xn are independent. We have

n∑
1

var Xr = var(X1 + . . .+Xn) = E[(X1 + . . .+Xn)
2]

≥ E[IA(X1 + . . .+Xn)
2] =

n∑
1

E[IAr(X1 + . . .+Xn)
2]

=
n∑
1

E[Ir(X1+. . .+Xr)
2+Ir(Xr+1+. . .+Xn)

2+2Ir(X1+. . .+Xr)(Xr+1+. . .+Xn)]

=
n∑
1

E[Ir(X1+. . .+Xr)
2]+E[Ir]E[(Xr+1+. . .+Xn)

2]+2E[Ir(X1+. . .+Xr)]E[(Xr+1+. . .+Xn)],

by independence. The second term is ≥ 0; the third term is 0 as each
E[Xk] = 0. So

n∑
1

var Xr ≥
n∑
1

E[Ir(X1 + . . .+Xr)
2].

But on Ar, (X1 + . . .+Xr)
2 ≥ ϵ2, so this is ≥ ϵ2

∑r
1 P (Ar) = ϵ2P (A), giving

Kolmogorov’s inequality. //

Corollary (Kolmogorov). If
∑

var Xn < ∞, then
∑
(Xn − E[Xn]) con-

verges a.s.
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Proof. By Kolmogorov’s inequality, for all ϵ > 0, m, p = 1, 2, . . .,

P (maxr=1,...,p|(Xm+1−E[Xm+1])+. . .+(Xm+r−E[Xm+r])| > ϵ) ≤ 1

ϵ2

m+p∑
r=m+1

var Xr.

Let p → ∞: by continuity (equivalently, σ-additivity) of the probability
measure P ,

P (supr≥1|
m+r∑

k=m+1

(Xk − E[Xk])| > ϵ) ≤ 1

ϵ2

∞∑
r=m+1

var Xr < ∞.

Let m → ∞: the right is the tail of a convergent series, so

P ( lim
m→∞

supr≥1|
m+r∑

k=m+1

(Xk − E[Xk])| > ϵ) = 0.

This says that
∑
(Xk − E[Xk]) is a.s. convergent. //

Lemma (Kronecker). If
∑

xn converges to s (finite), and bn ↑ ∞, then

1

bn

n∑
1

xkbk → 0 (n → ∞).

Proof. Write b0 := 0, ak := bk − bk+1, sn :=
∑n

1 xk. By Abel’s Lemma (=
partial summation),

1

bn

n∑
1

xkbk =
1

bn

∑
bk(sk−sk−1) = sn−

1

bn

n∑
1

aksk−1 = (sn−s)− 1

bn

n∑
1

ak(sk−1−s).

As bn ↑, an ≥ 0; for all ϵ > 0, there exists N such that |sn − s| < ϵ for
n ≥ N + 1. Then for n ≥ N ,

| 1
bn

n∑
1

xkbk| ≤ ϵ+| 1
bn

N∑
1

bk(sk−sk−1)|+ϵ(bn−bN)/bn ≤ 2ϵ+| 1
bn

N∑
1

bk(sk−sk−1)|.

Let n → ∞: limsup of LHS ≤ 2ϵ, for all ϵ > 0, so is 0, so LHS → 0. //

Theorem (Kolmogorov). If Xn are independent and
∑

var(Xn)/b
2
n < ∞

with bn ↑ ∞, then for Sn :=
∑n

1 Xk,

(Sn − E[Sn])/bn → 0 (n → ∞) a.s.
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Proof. By the Corollary to Kolmogorov’s Inequality,
∑
(Xn−E[Xn])/bn con-

verges a.s.. Then use Kronecker’s Lemma with xn = (Xn − E[Xn])/bn. //

Lemma. If X has mean µ and distribution function F ,

∞∑
1

P (|X| ≥ n) ≤ E|X| ≤ 1 +
∞∑
1

P (|X| ≥ n).

Proof. For i ≥ 0, let Ai := {i ≤ |X| < i+ 1}. Then
∑

iP (Ai) ≤ E|X| =
∫

|X|dP =
∑
i

∫
Ai

dP <
∑

(i+1)P (Ai) = 1+
∑
i

iP (Ai).

But

∑
i

iP (Ai) =
∑
i

i∑
j=1

1P (Ai) =
∑
j

∑
i≥j

P (Ai) =
∑
j

P (X ≥ j). //

Theorem (Strong Law of Large Numbers, Kolmogorov, 1933). For
Xn iid, (X1 + . . . + Xn)/n converges to a constant µ a.s. as n → ∞ iff
E|X| < ∞, and then µ = EX.

Proof. If E|X| < ∞, write µ for EX. Truncate |Xn| at n to obtain Yn:

Yn := Xn (|Xn| < n), 0 (|Xn| ≥ n).

By the Lemma,∑
P (Xn ̸= Yn) =

∑
P (|Xn| ≥ n) =

∑
P (|X1| ≥ n) ≤ E|X1| < ∞.

So by the first Borel-Cantelli lemma, a.s. only finitely many of the events
Xn ̸= Yn) occur. So

1

n

n∑
1

(Xk − Yk) → 0 a.s.,

so it suffices to show that, writing Sn :=
∑n

1 Yk,

Sn/n =
1

n

n∑
1

Yk → µ a.s. (∗)
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Now ∑
var(Yn)/n

2 ≤
∑

E[Y 2
n ]/n

2 =
∑ 1

n2

∫
|x|≤n

dF (x),

where F is the common distribution function of the Xn. The RHS is

∞∑
n=1

1

n2

n∑
j=1

∫
j−1<|x|≤j

x2dF (x) =
∞∑
j=1

∫
j−1<|x|≤j

x2dF (x)
∞∑
n=j

1/n2,

interchanging the order of summation. But in the integral x2 ≤ j|x|, and(arguing
as in the proof of the Integral Test for convergent series)

∞∑
i=j

1/i2 − 1/j2 ≤
∫ ∞

j
dx/x2 = 1/j ≤

∞∑
i=j

1/i2 :
∞∑
i=j

1/i2 ≤ 1/j + 1/j2 ≤ 2/j.

So

∑
var(Yn)/n

2 ≤
∑

E[Y 2
n ]/n

2 ≤ 2
∞∑
j=1

∫
j−1<|x|≤j

|x|dF (x) = 2E|X| < ∞.

Now (∗) follows by Kolmogorov’s theorem above.
Conversely, if Σn

1Xk/n → µ a.s., then also Σn−1
1 Xk/n = [(n−1)/n].Σn−1

1 Xk/(n−
1) → µ also. Subtracting, Xn/n → 0 a.s. Since the events (|Xn| ≥ n) are
independent, the second Borel-Cantelli lemma gives∑

P (|X1| ≥ n) =
∑

P (|Xn| ≥ n) < ∞.

This gives E|X| < ∞ by the Lemma. The conclusion of the first part now
applies, and this completes the proof. //
Note. 1. Kolmogorov’s SLLN of 1933 completes the story begun with
Bernoulli’s theorem in 1713. It gives precise form to the intuitive idea of
the ‘Law of Averages’ – e.g., thinking about a probability as a long-run fre-
quency. What this essentially says is that (thinking of a random variable as
its mean plus a random error) independent errors tend to cancel. Any form
of the LLN is really a result about cancellation.
2. Independence is not needed here. Strongly dependent errors need not
cancel, but weakly dependent errors do (weak dependence can be made pre-
cise in many ways!). Pairwise independence suffices (N. Etemadi, 1981; cf.
[GS], 7.5). For details, see e.g. the Stochastic Processes link on my Imperial
College homepage, Lecture 14.
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