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II. STOCHASTIC PROCESSES

1. Conditional expectations.
Suppose that X is a random variable, whose expectation exists (i.e.

E|X| < ∞, or X ∈ L1). Then EX, the expectation of X, is a scalar (a
number) – non-random. The expectation operator E averages out all the
randomness in X, to give its mean (a weighted average of the possible value
of X, weighted according to their probability, in the discrete case). It often
happens that we have partial information about X – for instance, we may
know the value of a random variable Y which is associated with X, i.e. car-
ries information about X. We may want to average out over the remaining
randomness. This is an expectation conditional on our partial information,
or more briefly a conditional expectation. This idea will be familiar already
from elementary courses, in two cases:
1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values
y1, · · · , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with
probabilities f(xi, yj) > 0, then
(i) f1(xi) = Σjf(xi, yj), f2(yj) = Σif(xi, yj),
(ii) P (Y = yj|X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/Σjf(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj|xi) = f(xi, yj)/f1(xi) = f(xi, yj)/Σjf(xi, yj).

Its expectation is

E(Y |X = xi) = ΣjyjfY |X(yj|xi) = Σjyjf(xi, yj)/Σjf(xi, yj).

But this approach only works when the events on which we condition have
positive probability, which only happens in the discrete case.
2. Density case. If (X,Y ) has density f(x, y), X has density f1(x) :=
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∫∞
−∞ f(x, y)dy, Y has density f2(y) :=

∫∞
−∞ f(x, y)dx. We define the condi-

tional density of Y given X = x by the continuous analogue of the discrete
formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/
∫ ∞

−∞
f(x, y)dy.

Its expectation is

E(Y |X = x) =
∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞
yf(x, y)dy/

∫ ∞

−∞
f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1, σ

2
2, ρ).

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1),

the familiar regression line of statistics (linear model). See e,g. [BF].
The problem here is that joint densities need not exist – do not exist, in

general. One of the great contributions of Kolmogorov’s classic book of 1933
was the realization that measure theory – specifically, the Radon-Nikodym
theorem – provides a way to treat conditioning in general, without making
assumptions that we are in one of the two cases – discrete case and density
case – above. Recall that the probability triple is (Ω,A,P ). Suppose that B
is a sub-σ-field of A, B ⊂ A (recall that a σ-field represents information; the
big σ-field A represents ‘knowing everything’, the small σ-field B represents
‘knowing something’).

Suppose that Y is a non-negative random variable whose expectation
exists: EY < ∞. The set-function

Q(B) :=
∫
B
Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B
Y dP = Σn

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure on
B. If P (B) = 0, then Q(B) = 0 also (the integral of anything over a null set
is zero), so Q << P . By the Radon-Nikodym theorem, there exists a Radon-
Nikodym derivative of Q with respect to P on B, which is B-measurable (in
the RN theorem earlier, we had ‘measurable’, meaning ‘A-measurable; here
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replace A by B). Following Kolmogorov (1933), we call this RN derivative
the conditional expectation of Y given (or conditional on) B, E(Y |B): this is
B-measurable, integrable, and satisfies∫

B
Y dP =

∫
B
E(Y |B)⌈P ∀B ∈ B. (∗)

In the general case, where E|Y | < ∞ but Y can change sign,

Y = Y+ − Y−

and define E(Y |B) by linearity as

E(Y |B) := E(Y+|B)− E(Y−|B).

Suppose now that B is the σ-field generated by a random variable X: B
= σ(X) (so B represents the information contained in X, or what we know
when we know X). Then E(Y |B) = E(Y |σ(X)), which is written more
simply as E(Y |X). Its defining property is∫

B
Y dP =

∫
B E(Y |X)dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we
write E(Y |σ(X1, · · · , Xn) as E(Y |X1, · · · , Xn):∫

B
Y dP =

∫
B
E(Y |X1, · · · , Xn)dP ∀B ∈ σ(X1, · · · , Xn).

Note. 1. To check that something is a conditional expectation: we have to
check that it integrates the right way over the right sets [i.e., as in (*)].
2. From (*): if two things integrate the same way over all sets B ∈ B, they
have the same conditional expectation given B.
3. We shall pass between the notations E(Y |B) and EBY at will.
4. The conditional expectation thus defined coincides with any we may have
already encountered - in regression or multivariate analysis, for example.
However, this may not be immediately obvious. The conditional expectation
defined above – via σ-fields and the Radon-Nikodym theorem – is rightly
called by Williams ([W], p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious
definitions, it proves its worth in action: see below.
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2. Properties of conditional expectations.
1. B = {∅,Ω}. Here B is the smallest possible σ-field (any σ-field of subsets
of Ω contains ∅ and Ω), and represents ‘knowing nothing’.

E(Y |{∅,Ω}) = EY.

Proof. We have to check (*) for B = ∅ and B = Ω. For B = ∅ both sides are
zero; for B = Ω both sides are EY . //
2. B = A. Here B is the largest possible σ-field, and represents ‘knowing
everything’.

E(Y |A) = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ A. The only integrand that
integrates like Y over all sets is Y itself (or a function = Y a.s.)
Note. When we condition on A (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out,
so taking the conditional expectation (averaging out remaining randomness)
has no effect, and leaves Y unaltered.
3. If Y is B-measurable, E(Y |B) = Y P -a.s.
Proof. Recall that Y is always A-measurable (this is the definition of Y being
a random variable). For B ⊂ A, Y may not be B-measurable, but if it is, the
proof above applies with B in place of A.
Note. If Y is B-measurable, when we are given B (that is, when we condition
on it), we know Y . That makes Y effectively a constant, and when we take
the expectation of a constant, we get the same constant.
4 (Pull-out property). If Y is B-measurable, E(Y Z|B) = Y E(Z|B) P -a.s.
Proof. We need to show∫

B
Y ZdP = Y

∫
B
ZdP (B ∈ B).

If Y = IB′ is the indicator of a set B′ ∈ B, this holds, as both sides are∫
B∩B′ ZdP . By linearity, it holds for simple B-measurable functions. It then
extends to non-negative integrable B-measurable functions by approximation
as usual, and to the general case by taking positive and negative parts. //
Note. Williams calls this property ‘taking out what is known’. To remember
it: if Y is B-measurable, then given B we know Y , so Y is effectively a
constant, so can be taken out through the integration signs.
5 (Tower property). If C ⊂ B, E[E(Y |B) |C] = E[Y |C] a.s.
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Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫
C
EC[EBY ]dP =

∫
C
EBY dP (definition of EC as C ∈ C)

=
∫
C
Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //
5’ (Tower property). If C ⊂ B, E[E(Y |C) |B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect, by 3. //
Corollary. E[E(Y |C) |C] = E[Y |C] a.s.
Thus the operation E[.|C] is linear and idempotent (doing it twice is the same
as doing it once), so is a projection. So we can use what we know about pro-
jections, from Linear Algebra, Functional Analysis etc.
Note. The tower property (in either form) is also known as the iterated condi-
tional expectations property or coarse-averaging property. When conditioning
on two σ-fields, one larger (finer), one smaller (coarser), the coarser rubs out
the effect of the finer, either way round.
6. Role of independence. If Y is independent of B,

E(Y |B) = EY a.s.

Proof. We require

E[Y ]P (B) = E[Y ]
∫
B
dP =

∫
B
Y dP (B ∈ B).

If Y = IA is an indicator, IA, IB are independent, so

P (A ∩B) = E[IA∩B] = E[IA.IB] = E[IA].E[IB] = P (A)P (B),

by the Multiplication Theorem. This gives the result for indicators; we extend
to simple functions by linearity, and thence to the non-negative integrable
case and the general case as usual. //
7. Conditional Mean Formula.

E[E(Y |B)] = EY P − a.s.
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Proof. Take C = {∅,Ω} in 5 and use 1. //
Example. Check this for the bivariate normal distribution considered above.
8. Conditional Variance Formula.

varY = EXvar(Y |X) + varXE(Y |X).

Recall varX := E[(X − EX)2]. Expanding the square,

varX = E[X2−2X.(EX)+(EX)2] = E(X2)−2(EX)(EX)+(EX)2 = E(X2)−(EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is
constant when X is known (= x, say), so can be taken outside an expectation
over X, EX say. Then

var(Y |X) := E(Y 2|X)− [E(Y |X)]2.

Take expectations of both sides over X:

EXvar(Y |X) = EX [E(Y 2|X)]− EX [E(Y |X)]2.

Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY )2,

{E(Y 2)− (EY )2} − {EX [E(Y |X)]2 − (EY )2}.

The first term is varY , by above. Since E(Y |X) has EX-mean EY , the
second term is varXE(Y |X), the variance (over X) of the random variable
E(Y |X (random because X is). Combining, the result follows.
Interpretation. varY = total variability in Y ,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,
varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2

σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2,

var(Y |X = x) = σ2
2 for all x, var(Y |X) = σ2

2(1−ρ2), EXvar(Y |X) = σ2
2(1−ρ2).
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Corollary. E(Y |X) has the same mean as Y and smaller variance (if any-
thing).
Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so varE[Y |X] ≤ varY from the Con-
ditional Variance Formula.

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a possible
estimator (or basis for an estimator) of θ. We would naturally want X to
contain all the information on θ contained within the entire sample. What
(if anything) does this mean in precise terms? The answer lies in the concept
of sufficiency (‘data reduction’) – one of the most important contributions to
statistics of the great English statistician R. A. (Sir Ronald) Fisher (1880-
1962). In the language of sufficiency, the Conditional Variance Formula is
seen as (essentially) the Rao-Blackwell Theorem, a key result in the area (see
the index in your favourite Statistics book if you want more here).

3. Filtrations.
The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional ex-

pectations E(X|B), give us all the machinery we need to handle static situ-
ations involving randomness. To handle dynamic situations, involving ran-
domness which unfolds with time – the essence of Stochastic Processes – we
need further structure.

Suppose time evolves in integer steps, t = 0, 1, 2, · · · (so we start at time
t = 0; we postpone continuous time). We suppose, for simplicity, that infor-
mation is never lost (or forgotten): thus, as time increases we learn more.
Recall that σ-fields represent information or knowledge. We thus need an
increasing sequence of σ-fields {Fn : n = 0, 1, 2, · · ·}, Fn ⊂ Fn+1 (n =
0, 1, 2, · · ·), where Fn represents what we know at time n. As usual, we take
the σ-fields to be complete, i.e., to contain all subsets of null sets as null sets.
Thus F0 represents the initial information (if there is none, F0 = {∅,Ω}, the
trivial σ-field). On the other hand, F∞ := limn→∞Fn represents all we ever
will know (the ‘Doomsday σ-field’). Often, F∞ will be F , but not always;
see e.g. [W], 15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probability
space endowed with such a filtration, {Ω, {Fn}, F ,P} is called a filtered
probability space. (These definitions are due to P. A. MEYER (1934-2003) of
Strasbourg; Meyer and the Strasbourg (and more generally, French) school
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of probabilists have been responsible for the ‘general theory of [stochastic]
processes’, and for much of the progress in stochastic integration, since the
1960s). Since the filtration is so basic to the definition of a stochastic process,
the more modern term for a filtered probability space is a stochastic basis.

We take a stochastic basis (Ω, {Ft, }, F , P ) (or filtered probability space),
which following Meyer we assume satisfies the usual conditions (conditions
habituelles):
a. completeness: each Ft contains all P -null sets of F ;
b. the filtration is right-continuous, i.e. Ft = Ft+ := ∩s>tFs.
4. Finite-dimensional distributions

A stochastic process X = (X(t))t≥0 is a family of random variables de-
fined on a stochastic basis. We say X is adapted if X(t) ∈ Ft (i.e. X(t) is
Ft-measurable) for each t: thus X(t) is known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time points in [0,∞), (X(t1), . . . , X(tn)) is
a random n-vector, with a distribution, µ(t1, . . . , tn) say. The class of all such
distributions as {t1, . . . , tn} ranges over all finite subsets of [0,∞) is called
the class of all finite-dimensional distributions of X. These satisfy certain
obvious consistency conditions:
DK1. deletion of one point ti can be obtained by ‘integrating out the un-
wanted variable’, as usual when passing from joint to marginal distributions;
DK2. permutation of the times ti permutes the arguments of the measure
µ(t1, . . . , tn) on Rn in the same way.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the Daniell-Kolmogorov theorem). This classical result (due
to P.J. Daniell in 1918 and A.N. Kolmogorov in 1933) is the basic existence
theorem for stochastic processes. For the proof, see e.g. [K].

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realize X = (X(t, ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → X(t, ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case
of Brownian motion, for example, and its relatives. Sometimes we need to
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allow our random function X(t, ω) to have jumps. It is then customary, and
convenient, to require X(t) to be right-continuous with left limits (RCLL),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for
instance, for the Poisson process and its relatives (see below).

General results on realisability – whether or not it is possible to realize, or
obtain, a process so as to have its paths in a particular function space – are
known; see for example the Kolmogorov-Ĉentsov theorem. For our purposes,
however, it is usually better to construct the processes we need directly on
the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization etc.) see e.g.
the classic book [D].

There are several ways to define ’sameness’ of two processes X and Y .
We say
(i) X and Y have the same finite-dimensional distributions if, for any integer
n and {t1, · · · , tn} a finite set of time points in [0,∞), the random vectors
(X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn)) have the same distribution;
(ii) Y is a modification of X if, for every t ≥ 0, we have P (Xt = Yt) = 1;
(iii) X and Y are indistinguishable if almost all their sample paths agree:

P [Xt = Yt; ∀0 ≤ t < ∞] = 1.

Indistinguishable processes are modifications of each other; the converse is
not true in general. However, if both processes have right-continuous sample
paths, the two concepts are equivalent. This will cover the processes we
encounter in this course.

A process is called progressively measurable if the map (t, ω) 7→ Xt(ω)
is measurable, for each t ≥ 0. Progressive measurability holds for adapted
processes with right-continuous (or left-continuous) paths – and so always in
the generality in which we work.

Finally, a random variable τ : Ω → [0,∞] is a stopping time if {τ ≤ t} ∈
Ft for all t ≥ 0.

If {τ < t} ∈ Ft for all t, τ is called an optional time. For right-continuous
filtrations (as here, under the usual conditions) the concepts of stopping and
optional times are equivalent.
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For a set A ⊂ Rd and a stochastic process X, we can define the hitting
time of A for X as

τA := inf{t > 0 : Xt ∈ A}.

For our usual situation (RCLL processes and Borel sets) hitting times are
stopping times.

We will also need the stopping time σ-algebra Fτ defined as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft.

Intuitively, Fτ represents the events known at time τ .
The continuous-time theory is technically much harder than the discrete-

time theory, for two reasons:
1. questions of path-regularity arise in continuous time but not in discrete
time;
2. uncountable operations (such as taking the supremum over an interval)
arise in continuous time. But measure theory is constructed using countable
operations: uncountable operations risk losing measurability.
This is why discrete and continuous time are often treated separately.
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