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5. Martingales: discrete time. We refer for a fuller account to [W]. The
classic exposition is Ch. VII in Doob’s book [D] of 1953.

Definition. A process X = (Xn) in discrete time is called a martingale
(mg) relative to ({Fn}, P ) if
(i) X is adapted (to {Fn});
(ii) E|Xn| < ∞ for all n;
(iii) [Xn|Fn−1] = Xn−1 P -a.s.
X is a supermartingale (supermg) if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale (submg) if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Martingales have a useful interpretation in terms of dynamic games: a mg
is ‘constant on average’, and models a fair game; a supermg is ‘decreasing
on average’, and models an unfavourable game; a submg is ‘increasing on
average’, and models a favourable game.
Note. 1. Martingales have many connections with harmonic functions in
probabilistic potential theory. The terminology in the inequalities above
comes from this: supermartingales correspond to superharmonic functions,
submartingales to subharmonic functions.
2. X is a submg (supermg) iff −X is a supermg (submg); X is a mg if and
only if it is both a submg and a supermg.
3. (Xn) is a mg iff (Xn −X0) is a mg. So w.l.o.g. take X0 = 0 if convenient.
4. If X is a martingale, then for m < n using the iterated conditional
expectation and the martingale property repeatedly (all equalities are in the
a.s.-sense)

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] = E[Xn−1|Fm] = . . . = E[Xm|Fm] = Xm,

and similarly for submgs, supermgs.
The word ‘martingale’ is taken from an article of harness, to control a

horse’s head. The word also means a system of gambling which consists in
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doubling the stake when losing in order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
Examples.
1. Mean zero random walk: Sn =

∑
Xi, withXi independent with E(Xi) = 0

is a mg (submg: positive mean; supermg: negative mean).
2. Stock prices: Sn = S0ζ1 · · · ζn with ζi independent positive r.vs with finite
first moment.
3. Accumulating data about a random variable ([W], pp. 96, 166–167). If
ξ ∈ L1(Ω,F ,P), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ
based on knowledge at time n), then using iterated conditional expectations

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1] = E[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale – indeed, a ‘nice’ mg; see below.
Stopping Times and Optional Stopping

Recall that a random variable τ taking values in {0, 1, 2, . . . ; +∞} is called
a stopping time if

{τ ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn ∀ n ≤ ∞.

From {τ = n} = {τ ≤ n} \ {τ ≤ n− 1} and {τ ≤ n} =
∪

k≤n{τ = k}, we see
the equivalent characterization

{τ = n} ∈ Fn ∀ n ≤ ∞.

Call a stopping time τ bounded if there is a constant K such that P (τ ≤
K) = 1. (Since τ(ω) ≤ K for some constant K and all ω ∈ Ω \ N with
P (N) = 0 all identities hold true except on a null set, i.e. a.s.)
Example.

Suppose (Xn) is an adapted process and we are interested in the time of
first entry of X into a Borel set B (e.g. B = [c,∞)):

τ = inf{n ≥ 0 : Xn ∈ B}.

Now {τ ≤ n} =
∪

k≤n{Xk ∈ B} ∈ Fn and τ = ∞ if X never enters B. Thus
τ is a stopping time. Intuitively, think of τ as a time at which you decide
to quit a gambling game: whether or not you quit at time n depends only
on the history up to and including time n – NOT the future. Thus stopping
times model gambling and other situations where there is no foreknowledge,
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or prescience of the future; in particular, in the financial context, where there
is no insider trading. Furthermore since a gambler cannot cheat the system
the expectation of his hypothetical fortune (playing with unit stake) should
equal his initial fortune.

Theorem (Doob’s Stopping-time Principle). Let τ be a bounded stop-
ping time and X = (Xn) a martingale. Then Xτ is integrable, and

E(Xτ ) = E(X0).

Proof. Assume τ(ω) ≤ K for all ω (K integer), and write

Xτ(ω)(ω) =
∞∑
k=0

Xk(ω)I(τ(ω) = k) =
K∑
k=0

Xk(ω)I(τ(ω) = k).

Then

E(Xτ ) = E[
K∑
k=0

XkI(τ = k)] (by the decomposition above)

=
K∑
k=0

E[XkI(τ = k)] (linearity of E)

=
∑K

k=0 E[E(XK |Fk)I(τ = k)] (X a mg, {τ = k} ∈ Fk )

=
K∑
k=0

E[XKI(τ = k)] (defn. of conditional expectation)

= E[XK

K∑
k=0

I(τ = k)] (linearity of E)

= E[XK ] (the indicators sum to 1)

= E[X0] (X a mg) //.

The stopping time principle holds also true if X = (Xn) is a supermg;
then the conclusion is

EXτ ≤ EX0.

Also, alternative conditions such as
(i) X = (Xn) is bounded (|Xn|(ω) ≤ L for some L and all n, ω);
(ii) Eτ < ∞ and (Xn−Xn−1) is bounded; suffice for the proof of the stopping
time principle.
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The stopping time principle is important in many areas, such as sequential
analysis in statistics.

We now wish to create the concept of the σ-algebra of events observable
up to a stopping time τ , in analogy to the σ-algebra Fn which represents the
events observable up to time n.
Definition. Let τ be a stopping time. The stopping time σ−algebra Fτ is
defined to be

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, for all n}.

Proposition. For τ a stopping time, Fτ is a σ−algebra.

Proof. We simply have to check the defining properties. Clearly Ω, ∅ are in
Fτ . Also for A ∈ Fτ we find

Ac ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn,

thus Ac ∈ Fτ . Finally, for a family Ai ∈ Fτ , i = 1, 2, . . . we have( ∞∪
i=1

Ai

)
∩ {τ ≤ n} =

∞∪
i=1

(Ai ∩ {τ ≤ n}) ∈ Fn,

showing
∪∞

i=1 Ai ∈ Fτ . //

One can show similarly that for σ, τ stopping times with σ ≤ τ , Fσ ⊆ Fτ .
Similarly, for any adapted sequence of random variables X = (Xn) and a.s.
finite stopping time τ , define

Xτ :=
∞∑
n=0

XnI(τ = n).

Then Xτ is Fτ -measurable.
We are now in position to obtain an important extension of the Stopping-

Time Principle.

Theorem (Doob’s Optional-Sampling Theorem, OST. Let X = (Xn)
be a mg and σ, τ be bounded stopping times with σ ≤ τ . Then

E [Xτ |Fσ] = Xσ, and so E(Xτ ) = E(Xσ).
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Proof. First observe that Xτ and Xσ are integrable (use the sum representa-
tion and the fact that τ is bounded by an integerK) andXσ is Fσ-measurable
by above. So it only remains to prove that

E(IAXτ ) = E(IAXσ) ∀A ∈ Fσ.

For any such fixed A ∈ Fσ, define ρ by

ρ(ω) = σ(ω)IA(ω) + τ(ω)IAc(ω).

Since
{ρ ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {τ ≤ n}) ∈ Fn

ρ is a stopping time, and from ρ ≤ τ we see that ρ is bounded. So the STP
implies E(Xρ) = E(X0) = E(Xτ ). But

E(Xρ) = E (XσIA +XτIAc) , E(Xτ ) = E (XτIA +XτIAc) .

So subtracting yields the result. //

Write Xτ = (Xτ
n) for the sequence X = (Xn) stopped at time τ , where

we define Xτ
n(ω) := Xτ(ω)∧n(ω). One can show

(i) If τ is a stopping time and X is adapted, then so is Xτ .
(ii) If τ is a stopping time and X is a mg (supermg, submg), then so is Xτ .
Examples and Applications.
1. Simple Random Walk. Recall the simple random walk: Sn :=

∑n
k=1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1 with
equal probability 1/2. Suppose we decide to bet until our net gain is first
+1, then quit. Let τ be the time we quit; τ is a stopping time. The stopping
time τ has been analyzed in detail (see e.g. [GS], 5.3, or Ex. 3.4). From this:
(i) τ < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) Eτ = +∞: the mean waiting-time for this is infinity. Hence also:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet until you get ahead (which happens eventually, by (i)), then
quit. However, as a gambling strategy, this is hopelessly impractical: because
of (ii), you need unlimited time, and because of (iii), you need unlimited cap-
ital – neither of which is realistic.

Notice that the Stopping-time Principle fails here: we start at zero, so
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S0 = 0, ES0 = 0; but Sτ = 1, so ESτ = 1. This example shows two things:
1. Conditions are indeed needed here, or the conclusion may fail (none of the
conditions in STP or the alternatives given are satisfied in this example).
2. Any practical gambling (or trading) strategy needs to have some integra-
bility or boundedness restrictions to eliminate such theoretically possible but
practically ridiculous cases.
The Doubling Strategy.

The strategy of doubling when losing – the martingale, according to the
Oxford English Dictionary (S3.3) – has similar properties. We play until the
time τ of our first win. Then τ is a stopping time, and is geometrically dis-
tributed with parameter p = 1/2. If τ = n, our winnings on the nth play are
2n−1 (our previous stake of 1 doubled on each of the previous n − 1 losses).
Our cumulative losses to date are 1 + 2 + . . . + 2n−2 = 2n−1 − 1 (summing
the geometric series), giving us a net gain of 1. The mean time of play is
E(τ) = 2 (so doubling strategies accelerate our eventually certain win to give
a finite expected waiting time for it). But no bound can be put on the losses
one may need to sustain before we win, so again we would need unlimited
capital to implement this strategy – which would thus be suicidal in practice.

Theorem (Doob Decomposition). Let X = (Xn) be an adapted process with
each Xn ∈ L∞. Then X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n

with M a martingale null at zero, A a predictable process null at zero. If
also X is a submartingale, A is increasing: An ≤ An+1 for all n, a.s.

Proof. If X has a Doob decomposition as above,

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An − An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is
An − An−1, since An (and An−1) is Fn−1-measurable by predictability. So

E[Xn −Xn−1|Fn−1] = An − An−1,

and summation gives

An =
n∑

k=1

E[Xk −Xk−1|Fk−1], a.s.
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So set A0 = 0 and use this formula to define (An), clearly predictable. We
then use the equation in the Theorem to define (Mn), then a martingale,
giving the Doob decomposition. To see uniqueness, assume two decomposi-
tions, i.e. Xn = X0 +Mn +An = X0 + M̃n + Ãn, then Mn − M̃n = An − Ãn.
Thus the martingale Mn − M̃n is predictable and so must be constant a.s.

If X is a submg, the LHS of the Doob decomposition is ≥ 0, so the RHS
is ≥ 0, i.e. (An) is increasing. //

Martingale transforms (Burkholder).
If X = (Xn) is a mg [submg, supermg], C = (Cn) is predictable, write

(C •X)n :=
n∑
1

Ck(Xk −Xk−1)

(C •N is the martingale [submg, supermg] transform of X by C). Then
(i) if C is bounded and non-negative and X is a submg [supermg], C •X is
a submg [supermg] null at 0;
(ii) if C is bounded and X is a mg, C •X is a mg null at 0.
Proof. As C is bounded and X is integrable, C •X is integrable; it is null at
0 (empty sum is 0). As C is predictable, Cn is Fn−1-measurable, so

E[(C •X)n − (C •X)n−1|Fn−1] = E[Cn(Xn −Xn−1|Fn−1] = CnE[Xn −Xn−1|Fn−1],

taking out what is known. This is ≥ 0 in case (i) with C ≥ 0 and X a submg,
and 0 in case (ii) with X a mg. //
Upcrossings.

For a process X and interval [a, b], define stopping times σk, τk by σ1 :=
min{n : Xn ≤ a}, τ1 := min{n > σ1 : Xn ≥ b}, and inductively σk :=
min{n > τk−1 : Xn ≤ a}, τk := min{n > σk : Xn ≥ b}. Call [σk, τk] an
upcrossing of [a, b] by X, and write Un := Un([a, b], X) for the number of
such upcrossings by time n.

Upcrossing Inequality (Doob). If X is a submg,

EUn([a, b], X) ≤ E[(Xn − a)+]/(b− a).

Proof. As (X − a)+ is a submg by Q2 (iii) and upcrossings of [a, b] by X
correspond to upcrossings of [0, b − a] by (X − a)+, we may (by passing to
(X − a)+) take X ≥ 0, a = 0. Write

Vn :=
∑
k≥1

I(σk < n ≤ τk).
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Then V is predictable (this comes from the ”<” above – we know at time
n − 1 whether the kth upcrossing has begun). So 1 − V is predictable. So
by above the transform (1− V ) •X is a submg. So

E[(1− V ) •X)n] ≥ E[(1− V ) •X)0] = 0 : E[(V •X)n] ≤ E[Xn].

Each completed upcrossing contributes at least b to the sum in (V •X)n =∑n
1 Vk(Xk −Xk−1), and the contribution of the last (possibly uncompleted)

upcrossing is ≥ 0, so
(V •X)n ≥ bUn.

Combining, bUn ≤ E[(V •X)n] ≤ E[Xn]: EUn ≤ E[Xn]/b. Reverting to the
original notation gives the result. //

(Sub-)Martingale Convergence Theorem (Doob). An L1-bounded
submg X = (Xn) (i.e. E|Xn| ≤ K for some K and all n) is a.s. conver-
gent.

Proof. For a < b rational, the expected number EUn of upcrossings of [a, b]
up to time n is ≤ (K + |a|)/(b − a) < ∞, for each n. As Un increases in n,
monotone convergence gives E[supUn] < ∞. So U := supUn < ∞ a.s. If
X∗ := liminfXn, X

∗ := limsupXn, {X∗ < X∗} = ∪a,b{X∗ < a < b < X∗}
(a < b rational). Each such set is null (or U would be infinite). So their union
is null, i.e. X∗ = X∗ a.s.: X is a.s. convergent (its limit X∞ may be infinite).
But E|X∞| = E[lim(inf)|Xn|] ≤ liminfE[|Xn|] (by Fatou), ≤ K < ∞. So
|X∞| < ∞ a.s., and Xn → X∞ finite, a.s. //

Corollary (Doob). A non-negative supermg Xn is a.s. convergent.

Proof. As Xn is a supermg, EXn decreases. As X ≥ 0, E[Xn] ≥ 0. So
E[|Xn|] = E[Xn] is decreasing and bounded below, so (convergent and)
bounded: Xn is L1-bounded. So the submg −Xn is L1-bounded, so a.s.
convergent by Doob’s Theorem, so Xn is a.s. convergent.
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