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Corollary (Doob). A non-negative supermg Xn is a.s. convergent.

Proof. As Xn is a supermg, EXn decreases. As X ≥ 0, E[Xn] ≥ 0. So
E[|Xn|] = E[Xn] is decreasing and bounded below, so (convergent and)
bounded: Xn is L1-bounded. So the submg −Xn is L1-bounded, so a.s.
convergent by Doob’s Theorem, so Xn is a.s. convergent.

6. Uniform Integrability (UI) and Martingales (Mgs)
Random variables Xn are called uniformly integrable (UI) if

supn

∫
{|Xn|>a}

|Xn|dP ↓ 0 (a ↑ ∞).

Note that:
(i) If (Xn) are UI, then each Xn is integrable. For,

E|Xn| =
∫
{|Xn|≤a}

|Xn|dP +
∫
{|Xn|>a}

|Xn|dP ≤ a+ o(1) < ∞.

(ii) If each |Xn| ≤ Y ∈ L1, then (Xn) is UI.
(iii) If supn|Xn| ∈ L1, then (Xn) is UI, as then

supn

∫
{|Xn|>a}

|Xn|dP ≤
∫
{|Xn|≥a}

(supk|Xk|)dP → 0 (a → ∞),

by dominated convergence.
The next result extends Fatou’s Lemma and dominated convergence.

Theorem. For (Xn) UI and non-negative (or bounded below by an inte-
grable function),
(i) E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim supE[Xn] ≤ E[lim sup Xn].
(ii) If Xn → X a.s. or in probability, then X ∈ L1 and E[Xn] → E[X].

Proof. (i) As lim sup fn is the limit of a subsequence of (fn), integrability of
lim sup fn follows by Fatou’s Lemma (I.1, L1). For c ≥ 0,

E[Xn] =
∫
XndP =

∫
{Xn<−c}

XndP +
∫
{Xn≥−c}

XndP.
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Choose ϵ > 0. By UI, we can take c so large that each first term on RHS has
modulus < ϵ. As XnI(Xn ≥ −c) ≥ −c, integrable, Fatou’s Lemma gives

lim inf
∫
{Xn≥−c}

XndP ≥
∫

lim infXnI(Xn ≥ −c)dP.

As XnI(Xn ≥ −c) ≥ Xn, RHS ≥
∫
lim infXndP . Combining,

lim inf E[Xn] ≥ E[lim infXn]− ϵ.

As ϵ > 0 is arbitrarily small, this gives the ‘liminf’ part; the ‘limsup’ part is
similar.
(ii) If Xn → X a.s., (ii) follows from (i). If Xn → X in probability,
there is a subsequence Xnk

→ X a.s. (quote). Then by (i), X ∈ L1, and
E[Xnk

] → E[X]. Similarly, every subsequence has a further sub-subsequence
→ X a.s., along which the mean converges to E[X]. But this implies con-
vergence along the whole sequence (check). //

Uniform integrability is what is needed to pass from a.s. convergence to
L1-convergence, and to strengthen convergence in prob. to a.s. convergence:

Proposition 1. (i) If Xn is UI and a.s. convergent, it is L1-convergent.
(ii) If p ∈ (0,∞), Xn → X in probability and (|Xn|p) is UI, then Xn → X
in Lp.

Proof. (i) For a > 0, define fa(x) as −a for x ≤ −a, x for −a ≤ x ≤ a, +a
for x ≥ a. Then fa is bounded and continuous, and (check) |x− fa(x)| ≤ x.
By the Triangle Inequality,

∥Xm −Xn∥1 ≤ ∥fa(Xm)− fa(Xn)∥1 + ∥Xm − fa(Xm)∥1 + ∥Xn − fa(Xn)∥1.

If Xn → X∞ a.s., then also fa(Xn) → fa(X∞) a.s. as fa is continuous. As
|fa| ≤ a, dominated convergence then shows that fa(Xn) → fa(X∞) in L1

(so is Cauchy in L1). Also

∥Xm − fa(Xm)∥1 ≤
∫
{|Xm|>a}

|Xm|dP

by definition of fa. Let m,n → ∞: the first term on the RHS → 0 as fa(Xn)
is Cauchy in L1. By UI, the second and third terms → 0 as a → ∞. This
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shows that Xn is Cauchy in L1, so convergent in L1 as L1 is complete (Riesz-
Fischer theorem – quote). //
(ii) We quote this, as we shall not need it; see e.g. Ash [A], Th. 7.5.4.

Proposition 2. (Xn) is UI iff E[|Xn|] is bounded and (Xn) is uniformly
absolutely continuous, i.e.

supn

∫
A
|Xn|dP → 0 (P (A) → 0).

Proof. If (Xn) is UI,∫
A
|Xn|dP =

∫
A∩{|Xn|≥c}

|Xn|dP+
∫
A∩{|Xn|<c}

|Xn|dP ≤
∫
{|Xn|≥c}

|Xn|dP+cP (A).

Choose ϵ > 0. For c large enough, the first term < ϵ/2 for all n. Then if
P (A) < ϵ/(2c),

∫
A |Xn|dP < ϵ, proving (Xn) unif. abs. continuous. Also

E|Xn| =
∫
{|Xn|≥c}

|Xn|dP +
∫
{|Xn|<c}

|Xn|dP < ϵ+ c

for large n (the first term by UI), so E|Xn| is bounded.
Conversely, by Markov’s Inequality

P (|Xn| ≥ c) ≤ c−1E|Xn| ≤ c−1supnE|Xn| → 0 (c → ∞),

uniformly in n. This and the uniform absolute continuity give∫
{|Xn|≥c}

|Xn|dP → 0 (c → ∞)

uniformly in n, giving (Xn) UI. //

Lemma (UI Lemma). If X ∈ L1, then the family {E[X|B]} as B varies
over all sub-σ-fields of A is UI.

Proof. |E[X|B]| ≤ E[|X| |B]. Also, for a > 0 {|E[X|B] | > a} ⊂
{E[|X| |B] > a}, so I({|E[X|B] | > a}) ≤ I({E[|X| |B] > a}). Multiply:

|E[X|B] |I({|E[X|B] | > a}) ≤ E[|X| |B]I({E[|X| |B] > a}).
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Take expectations. WritingA := {E[|X| |B]≥ a}, the RHS gives
∫
AE[|X| |B]dP ,

and as A is B-measurable, this is
∫
AE[|X|]dP , by definition of conditional

expectation. Splitting between {|X| ≤ b} and {|X| > b}, this is at most

P (E[|X| |B] ≥ a) +
∫
{|X|>b}

|X|dP.

But
P (E[|X| |B] ≥ a) ≤ a−1E[E[|X||B]]

by Markov’s Inequality, which is a−1E|X| by the Conditional Mean Formula.
Combining,

supB
∫
A
E[|X| |B]dP ≤ b

a
E|X|+

∫
{|X|>b}

|X|dP.

Take b :=
√
a and let a → ∞: RHS → 0 (as X ∈ L1), so LHS → 0. This

says that {E[X|B]} is UI, as required. //

Theorem (Lévy). If Y ∈ L1 and (Fn) is a filtration with Fn↑ F∞, then

E[Y |Fn] → E[Y |F∞] a.s and in L1.

Proof. If Xn := E[Y |Fn], then Xn is a mg (w.r.t. (Fn)), and is UI (by
the UI Lemma). As E[|Xn|] ≤ E[|Y |] < ∞, (Xn) is an L1-bounded mg, so
a.s. convergent (Doob’s Mg Convergence Thm), to X∞, say. Also Xn is L1-
convergent, by the Theorem (ii). It remains to show that X∞ = E[Y |F∞].
For A ∈ Fn, ∫

A
Y dP =

∫
A
E[Y |Fn]dP =

∫
A
XndP →

∫
A
X∞dP,

by L1-convergence. So ∫
A
Y dP =

∫
A
X∞dP,

for all A ∈ Fn, for each n. As the Fn generate F∞, this extends to A ∈ F∞
(by a monotone class argument, or Carathéodory’s Extension Theorem). As
Xn is Fn-measurable and Fn ⊂ F∞, Xn is F∞-measurable, hence so is its
limit X∞. So

X∞ = E[Y |F∞],
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by definition of conditional expectation. //

If the index set {1, 2, . . .} of the filtration (Fn) extends to {1, 2, . . . ,∞} so
that {Xn : n = 1, 2, . . . ,∞} is a (sub-)mg w.r.t. this filtration, the (sub-)mg
is called closed, with closing (or last) element X∞.

Theorem. Let (Xn) be a UI submg. Then supnE[X+
n ] < ∞, and Xn con-

verges to a limit X∞ a.s. and in L1, which closes the submg.

Proof. By UI, supE[|Xn|] < ∞. So by Doob’s Mg Convergence Thm,
Xn → X∞ a.s. Again by UI, Xn → X∞ in L1.

If An ∈ Fn and k ≥ n,
∫
A XndP ≤

∫
AXkdP as (Xn) is a submg. Let

k → ∞: Xk → X∞ in L1 gives
∫
AXndP ≤

∫
AX∞dP . So by definition of

conditional expectation, Xn ≤ E[X∞|F∞]. So X∞ closes the submg. //

Theorem. Xn is a UI mg iff there exists Y ∈ L1 with

Xn = E[Y |Fn].

Then Xn → E[Y |F∞] a.s. and in L1.

Proof. If X is a UI mg, it is closed (by X∞), by above, and then Xn → X∞
a.s. and in L1; take Y := X∞.

Conversely, given Y ∈ L1 and Xn := E[Y |Fn], (Xn) is a mg, and is UI
by above; the convergence follows by Lévy’s result above. //

Corollary (UI Mg Convergence Theorem). For a mg X = (Xn), the
following are equivalent:
(i) X is UI;
(ii) X converges a.s. and in L1 (to X∞, say);
(iii) X is closed by a random variable Y : Xn = E[Y |Fn];
(iv) X is closed by its limit X∞: Xn = E[X∞|Fn].

Proof. It remains to identify Y with the a.s. (or L1) limit X∞, which follows
by uniqueness of limits. //

Note. 1. The UI mgs (also called regular mgs) are the ‘nice’ mgs. Note that
all the randomness is in the closing rv Y = X∞. As time progresses, more of
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Y is revealed as more information becomes available (progressive revelation,
as in a ‘striptease’).
2. UI mgs are also common, and crucially important in Mathematical Fi-
nance. There, one does two things: (i) discount all asset prices (so as to
work with real rather than nominal prices); (ii) change from the real-world
probability measure P to an equivalent martingale measure Q (EMM, or risk-
neutral measure) under which discounted asset prices S̃t become (Q)-mgs:

S̃t = EQ[S̃T |Ft]

(here T < ∞ is typically the expiry time of an option). See e.g. [BK], esp.
Ch. 4.

Matters are simpler in the Lp case for p ∈ (1,∞). Call X = (Xn) Lp-
bounded if

supn∥Xn∥p < ∞
(so in particular each Xn ∈ Lp). We may take p = 2 for simplicity, and
because of the link with Hilbert-space methods and the important Kunita-
Watanabe Inequalities.

Theorem (Lp-Mg Theorem). If p > 1, an Lp-bounded mg Xn is UI, and
converges to its limit X∞ a.s. and in Lp.

Proof. First, Xn is UI: for, if a > 0,

ap−1
∫
{|Xn|>a}

|Xn|dP ≤
∫
|Xn|pdP.

So if C := supn∥Xn∥p < ∞,

supn

∫
{|Xn|>a}

|Xn|dP ≤ Cp/ap−1 → a (a → ∞)

(as p > 1), so Xn is UI.
So (UI Mg Th.) Xn = E[X∞|Fn], where Xn → X∞ a.s. and X∞ ∈ L1.

So |Xn|p → |X∞|p a.s. By Fatou’s Lemma∫
|X∞|pdP ≤ lim inf

∫
|Xn|pdP ≤ Cp < ∞,

so X∞ ∈ Lp.
If X∞ is bounded (|X∞(ω)| ≤ a for all ω), then Xn = E[X∞|Fn] is also
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bounded by a. Then |Xn − X∞|p ≤ 2ap, and Xn → X∞ in Lp follows by
dominated convergence.

In the general case, we use

X∞ = (X∞ ∧ a) + (X∞ − a)+

(check). Then

∥E[X∞|Fn]−X∞∥p ≤ ∥E[X∞ ∧ a|Fn]−X∞ ∧ a∥p + 2∥(X∞ − a)+∥p
(as conditional expectations decrease Lp-norms. This is true for p ≥ 1, but
simpler for p = 2 – the only case we shall need – as then conditional ex-
pectation is a projection. We quote this – see e.g. [S], Ch. 22 (p = 2), 23
(p ∈ [1,∞]).) By the bounded case, the first term on RHS → 0 as n → ∞.
The second term→ 0 as a → ∞ by dominated convergence (recallX∞ ∈ Lp).
So Xn = E[X∞|Fn] → X∞ in Lp as well as a.s. //

7. Martingales in continuous time
A stochastic process X = (X(t))0≤t<∞ is a martingale (mg) relative to

({Ft}, P ) if
(i) X is adapted, and E|X(t)| < ∞ for all ≤ t < ∞;
(ii) E[X(t)|Fs] = X(s) P - a.s. (0 ≤ s ≤ t),
and similarly for submgs (with ≤ above)and supermgs (with ≥).

In continuous time there are regularization results, under which one can
take X(t) RCLL in t (basically t → EX(t) has to be right-continuous).
Then the analogues of the results for discrete-time martingales hold true.
Among the contrasts with the discrete case, we mention that the Doob-Meyer
decomposition below, easy in discrete time, is a deep result in continuous
time.
Interpretation.

Martingales model fair games. Submartingales model favourable games.
Supermartingales model unfavourable games.

Martingales represent situations in which there is no drift, or tendency,
though there may be lots of randomness. In the typical statistical situation
where we have data = signal + noise, martingales are used to model the
noise component. It is no surprise that we will be dealing constantly with
such decompositions later (with ‘semi-martingales’).
Closed martingales.

As in discrete time, some martingales are of the form

Xt = E[X|Ft] (t ≥ 0)
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for some integrable random variable X. Then X is said to close (Xt), which
is called a closed (or closable) martingale, or a regular martingale, or a UI
mg. As before, closure is equivalent to UI, and closed/UI martingales have
specially good convergence properties:

Xt → X∞ (t → ∞) a.s. and in L1,

and then also
Xt = E[X∞|Ft], a.s.

Doob-Meyer Decomposition.
One version in continuous time of the Doob decomposition in discrete

time – called the Doob-Meyer (or the Meyer) decomposition – follows next
but needs one more definition. A process X is called of class (D) if

{Xτ : τ a finite stopping time}
is uniformly integrable. Then a (càdlàg, adapted) process Z is a submartin-
gale of class (D) if and only if it has a decomposition

Z = Z0 +M + A

with M a uniformly integrable martingale and A a predictable increasing
process, both null at 0. This composition is unique.
Square-integrable Martingales.

For M = (Mt) a martingale, write M ∈ M2 if M is L2-bounded:

suptE(M2
t ) < ∞,

and M ∈ M2
0 if further M0 = 0. Write cM2, cM2

0 for the subclasses of
continuous M .

As in discrete time, for M ∈ M2,M is convergent:

Mt → M∞ a.s. and in mean square

for some random variable M∞ ∈ L2. One can recover M from M∞ by

Mt = E[M∞|Ft].

The bijection
M = (Mt) ↔ M∞

is in fact an isometry, and as M∞ ∈ L2, which is a Hilbert space, so too is
M2.

Again, notice that all the randomness in the mg (Mt) is in the limit ran-
dom variable M .
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