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Lecture 7. 23.2.2012
Quadratic Variation.

A non-negative right-continuous submartingale is of class (D). So it has
a Doob-Meyer decomposition. We specialize this to X2, with X ∈ cM2:

X2 = X2
0 +M + A,

with M a continuous martingale and A a continuous (so predictable) and
increasing process. We write

⟨X⟩ := A

here, and call ⟨X⟩ the quadratic variation of X. We shall see later that this
is a crucial tool for the stochastic integral. For BM, we shall later identify
this with a quadratic analogue of the (finite) variation (FV) of I.4.
Quadratic Covariation.

We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨.⟩ to a bilinear form ⟨., .⟩ with
two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩.

(The polarization identity reflects the Hilbert-space structure of the inner
product ⟨., .⟩.) If N is of finite variation, M ± N has the same quadratic
variation as M , so ⟨M,N⟩ = 0.

Where there is a Hilbert-space structure, one can use the language of
projections, of Pythagoras’ theorem etc., and draw diagrams as in Euclidean
space. The right way to treat the Linear Model of statistics is in such terms
(analysis of variance = ANOVA, sums of squares etc.)

8. Brownian motion
Brownian motion originates in work of the botanist Robert Brown in 1828.

It was introduced into finance by Louis Bachelier in 1900, and developed in
physics by Albert Einstein in 1905 (see the handout for background and
references).

The fact that Brownian motion exists is quite deep, and was first proved
by Norbert WIENER (1894–1964) in 1923. In honour of this, Brownian
motion is also known as the Wiener process, and the probability measure
generating it – the measure P ∗ on C[0, 1] (one can extend to C[0,∞)) by

P ∗(A) = P (W. ∈ A) = P ({t → Wt(ω)} ∈ A)
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for all Borel sets A ∈ C[0, 1] – is called Wiener measure.
Definition and Existence
Definition. A stochastic processX = (X(t))t≥0 is a standard (one-dimensional)
Brownian motion, BM or BM(R), on some probability space (Ω,F ,P), if
(i) X(0) = 0 a.s.,
(ii)X has independent increments: X(t+u)−X(t) is independent of σ(X(s) :
s ≤ t) for u ≥ 0,
(iii) X has stationary increments: the law of X(t + u)−X(t) depends only
on u,
(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed
with mean 0 and variance u, X(t+ u)−X(t) ∼ N(0, u),
(v) X has continuous paths: X(t) is a continuous function of t, i.e. t →
X(t, ω) is continuous in t for all ω ∈ Ω.

The path continuity in (v) can be relaxed by assuming it only a.s.; we
can then get continuity by excluding a suitable null-set from our probability
space.

We shall henceforth denote standard Brownian motion BM(R) by W =
(W (t)) (W for Wiener), though B = (B(t)) (B for Brown) is also com-
mon. Standard Brownian motion BM(Rd) in d dimensions is defined by
W (t) := (W1(t), . . . ,Wd(t)), where W1, . . . ,Wd are independent standard
Brownian motions in one dimension (independent copies of BM(R)).

We turn next to Wiener’s theorem, on existence of Brownian motion.
The proof (cf. [BK], 5.3.1) is a streamlined version of the classical one due
to Lévy in his book of 1948 and Cieselski in 1961.

Theorem (Wiener, 1923). Brownian motion exists.

Covariance.
Before addressing existence, we first find the covariance function. For

s ≤ t, Wt = Ws + (Wt −Ws), so as E(Wt) = 0,

cov(Ws,Wt) = E(WsWt) = E(W 2
s ) + E[Ws(Wt −Ws)].

The last term is E(Ws)E(Wt −Ws) by independent increments, and this is
zero, so

cov(Ws,Wt) = E(W 2
s ) = s (s ≤ t) : cov(Ws,Wt) = min(s, t).
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A Gaussian process (one whose finite-dimensional distributions are Gaus-
sian) is specified by its mean function and its covariance function, so among
centered (zero-mean) Gaussian processes, the covariance function min(s, t)
serves as the signature of Brownian motion.
Finite-dimensional Distributions.

For 0 ≤ t1 < . . . < tn, the joint law of X(t1), X(t2), . . . , X(tn) can be
obtained from that of X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1). These are
jointly Gaussian, hence so are X(t1), . . . , X(tn): the finite-dimensional dis-
tributions are multivariate normal. Recall that the multivariate normal law
in n dimensions, Nn(µ,Σ) is specified by the mean vector µ and the covari-
ance matrix Σ (non-negative definite). So to check the finite-dimensional
distributions of BM – stationary independent increments with Wt ∼ N(0, t)
– it suffices to show that they are multivariate normal with mean zero and
covariance cov(Ws,Wt) = min(s, t) as above.
Construction of BM.

It suffices to construct BM for t ∈ [0, 1]). This gives t ∈ [0, n] by dila-
tion, and t ∈ [0,∞) by letting n → ∞. First, take L2[0, 1], and any complete
orthonormal system (cons) (ϕn) on it. Now L2 is a Hilbert space, under the
inner product

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx (or

∫
fg),

so norm ∥f∥ := (
∫
f2)1/2). By Parseval’s identity,∫ 1

0
fg =

∞∑
n=0

⟨f, ϕn⟩⟨g, ϕn⟩

(where convergence of the series on the right is in L2, or in mean square:
∥f −∑n

0 ⟨f, ϕk⟩ϕk∥ → 0 as n → ∞). Now take, for s, t ∈ [0, 1],

f(x) = I[0,s](x), g(x) = I[0,t](x).

Parseval’s identity becomes

min(s, t) =
∞∑
n=0

∫ s

0
ϕn(x)dx

∫ t

0
ϕn(x)dx.

Now take (Zn) independent and identically distributed N(0, 1) (recall that
we can construct these, indeed from one X ∼ U [0, 1]), and write

Wt =
∞∑
n=0

Zn

∫ t

0
ϕn(x)dx.
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This is a sum of independent zero-mean random variables. By Kolmogorov’s
theorem on random series, it converges a.s. if the sum of the variances
converges. This is

∑∞
n=0(

∫ t
0 ϕn(x)dx)

2, = t by above. So the series above
converges a.s., and by excluding the exceptional null set from our probability
space (as we may), everywhere.
The Haar System. Define

H(t) := 1 on [0,
1

2
), −1 on [

1

2
, 1], 0 else.

Write H0(t) ≡ 1, and for n ≥ 1, express n in dyadic form as n = 2j + k for
a unique j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1. Using this notation for n, j, k
throughout, write

Hn(t) := 2j/2H(2jt− k)

(so Hn has support [k/2j, (k + 1)/2j]). So if m,n (m ̸= n) have the same
j, HmHn ≡ 0, while if m,n have different js, one can check that HmHn is
2(j1+j2)/2 on half its support, −2(j1+j2)/2 on the other half, so

∫
HmHn = 0.

Also H2
n is 2j on [k/2j, (k + 1)/2j], so

∫
H2

n = 1. Combining:∫
HmHn = δmn,

and (Hn) form an orthonormal system, called the Haar system. For com-
pleteness: the indicator of any dyadic interval [k/2j, (k + 1)/2j] is in the
linear span of the Hn (difference two consecutive Hns and scale). Linear
combinations of such indicators are dense in L2[0, 1]. Combining: the Haar
system (Hn) is a complete orthonormal system in L2[0, 1].
The Schauder System. We obtain the Schauder system by integrating the
Haar system. Consider the triangular function (or ‘tent function’)

∆(t) := 2t on [0,
1

2
), 2(1− t) on [

1

2
, 1], 0 else.

Define the Schauder functions by ∆0(t) := t, ∆1(t) := ∆(t),

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). We find that∫ t

0
H(u)du =

1

2
∆(t),

∫ t

0
Hn(u)du = λn∆n(t),
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where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2A(\ = ∈| + ∥ ≥ ∞).

The Schauder system (∆n) is again a cons on L2[0, 1].

Theorem (Paley-Wiener-Zygmund, 1932). For (Zn)
∞
0 independentN(0, 1)

random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Lemma. For Zn independent N(0, 1),

|Zn| ≤ C
√
log n ∀n ≥ 2,

for some random variable C < ∞ a.s.

Proof of the Lemma. For x > 1,

P (|Zn| ≥ x) =
2√
2π

∫ ∞

x
e−u2/2du ≤

√
2/π

∫ ∞

x
ue−u2/2du =

√
2/πe−x2/2.

So for any a > 1,

P (|Zn| >
√
2a log n) ≤

√
2/π exp{−a log n} =

√
2/πn−a.

Since
∑

n−a < ∞ for a > 1, the Borel-Cantelli lemma gives

P (|Zn| >
√
2a log n for infinitely many n) = 0.

So

C := sup
n≥2

|Zn|√
log n

< ∞ a.s.

Proof of the Theorem.
1. Convergence. Choose J and M ≥ 2J ; then

∞∑
n=M

λn|Zn|∆n(t) ≤ C
∞∑
M

λn

√
log n∆n(t).
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The right is majorized by

C
∞∑
J

2j−1∑
k=0

1

2
2−j/2

√
j + 1∆2j+k(t)

(perhaps including some extra terms at the beginning, using n = 2j + k <
2j+1, log n ≤ (j + 1) log 2, and ∆n(.) ≥ 0, so the series is absolutely conver-
gent). In the inner sum, only one term is non-zero (t can belong to only one
dyadic interval [k/2j, (k + 1)/2j)), and each ∆n(t) ∈ [0, 1]. So

LHS ≤ C
∞∑
j=J

1

2
2−j/2

√
j + 1 ∀t ∈ [0, 1],

and this tends to 0 as J → ∞, so as M → ∞. So the series
∑

λnZn∆n(t) is
absolutely and uniformly convergent, a.s. Since continuity is preserved under
uniform convergence and each ∆n(t) is continuous, Wt is continuous in t.
2. Covariance. By absolute convergence and Fubini’s theorem,

E(Wt) = E

( ∞∑
0

λnZn∆n(t)

)
=
∑

λn∆n(t)E(Zn) =
∑

0 = 0.

So the covariance is

E(WsWt) = E

[∑
m

Zm

∫ s

0
ϕm ×

∑
n

Zn

∫ t

0
ϕn

]
=
∑
m,n

E[ZmZn]
∫ s

0
ϕm

∫ t

0
ϕn,

or as E[ZmZn] = δmn, the Parseval calculation above gives

∑
n

∫ s

0
ϕm

∫ t

0
ϕn = min(s, t).

3. Joint Distributions. Take t1, . . . , tm ∈ [0, 1]; we have to show that
(W (t1), . . . ,W (tn)) is multivariate normal, with mean vector 0 and covari-
ance matrix (min(ti, tj)). The multivariate characteristic function is

E

exp
i

m∑
j=1

ujW (tj)


 = E

exp
i

m∑
j=1

uj

∞∑
n=0

λnZn∆n(t)


 ,

which by independence of the Zn is

∞∏
n=0

E

exp
iλnZn

m∑
j=1

uj∆n(tj)


 .
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Since each Zn is N(0, 1), the right-hand side is

∞∏
n=0

exp

−1

2
λ2
n

 m∑
j=1

uj∆n(tj)

2
 = exp

−1

2

∞∑
n=0

λ2
n

 m∑
j=1

uj∆n(t)

2
 .

The sum in the exponent on the right is

∞∑
n=0

λ2
n

m∑
j=1

m∑
k=1

ujuk∆n(tj)∆n(tk) =
m∑
j=1

m∑
k=1

ujuk

∞∑
n=0

∫ tj

0
Hn(u)du

∫ tk

0
Hn(u)du,

giving
m∑
j=1

m∑
k=1

ujuk min(tj, tk),

by the Parseval calculation, as (Hn) are a cons. Combining,

E

exp
i

m∑
j=1

ujW (tj)


 = exp

−1

2

m∑
j=1

m∑
k=1

ujuk min(tj, tk)

 .

This says that (W (t1), . . . ,W (tn)) is multinormal with mean 0 and covari-
ance function min(tj, tk) as required. This completes the construction of BM,
and the proof of the Theorem. //

9. Quadratic Variation of Brownian Motion
Recall that aN(µ, σ2) distributed random variable ξ has moment-generating

function

M(t) := E (exp{tξ}) = exp
{
µt+

1

2
σ2t2

}
.

We take µ = 0 below; we can recover the general case by adding µ back on.
So, for ξ N(0, σ2) distributed,

M(t) = exp
{
1

2
σ2t2

}
= 1 +

1

2
σ2t2 +

1

2!

(
1

2
σ2t2

)2

+O(t6)

= 1 +
1

2!
σ2t2 +

3

4!
σ4t4 +O(t6).

As the Taylor coefficients of the moment-generating function are the mo-
ments (hence the name moment-generating function!), E(ξ2) = var(ξ) = σ2,
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E(ξ4) = 3σ4, so var(ξ2) = E(ξ4)− [E(ξ2)]2 = 2σ4. For W Brownian motion
on R, this gives

E(W (t)) = 0, var(W (t)) = E((W (t)2) = t, var(W (t)2) = 2t2.

In particular, for t > 0 small, this shows that the variance of W (t)2 is neg-
ligible compared with its expected value. Thus, the randomness in W (t)2 is
negligible compared to its mean for t small. This suggests that if we take a
fine enough partition P of [0, t] – a finite set of points 0 = t0 < t1 < . . . <
tn = t with grid mesh ∥P∥ := max |ti − ti−1| small enough – then writing
∆W (ti) := W (ti)−W (ti−1) and ∆ti := ti − ti−1,

n∑
i=1

(∆W (ti))
2

will closely resemble

n∑
i=1

E((∆W (ti))
2) =

n∑
i=1

∆ti =
n∑

i=1

(ti − ti−1) = t.

This is in fact true:
n∑

i=1

(∆W (ti))
2 →

n∑
i=1

∆ti = t in probability (max |ti − ti−1| → 0).

This limit is called the quadratic variation of W over [0, t].
Start with the formal definitions. A partition πn of [0, t] is a finite set

of points tni such that 0 = tn0 < tn1 < . . . < tn,k(n) = t; the mesh of the
partition is |πn| := maxi(tni − tn,(i−1)), the maximal subinterval length. We
consider nested sequences (πn) of partitions (each refines its predecessors by
adding further partition points), with |πn| → 0. Call (writing ti for tni for
simplicity)

πnB :=
∑
ti∈πn

(W (ti+1)−W (ti))
2

the quadratic variation of W on (πn). The following classical result is due to
Lévy (in his book of 1948); see e.g. [P], I.3.

Theorem (Lévy). The quadratic variation of a Brownian path
over [0, t] exists and equals t, in mean square (and hence in probability):

⟨W ⟩t = t.
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