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Proof.

πnW−t =
∑
ti∈πn

{(W (ti+i)−W (ti))
2−(ti+1−ti)} =

∑
i

{(∆iW )2−(∆it)} =
∑
i

Yi,

where since ∆iW ∼ N(0,∆it), E[(∆iW )2] = ∆ti, so the Yi have zero mean,
and are independent by independent increments of W . So

E[(πnW − t)2] = E[(
∑
i

Yi)
2] =

∑
i

E(Y 2
i ),

since variance adds over independent summands.
Now as ∆iW ∼ N(0,∆it), (∆iW )/

√
∆it ∼ N(0, 1), so (∆iW )2/∆it ∼ Z2,

where Z ∼ N(0, 1). So Yi = (∆iW )2 −∆it ∼ (Z2 − 1)∆it, and

E[(πnW − t)2] =
∑
i

E[(Z2 − 1)2](∆it)
2 = c

∑
i

(∆it)
2,

writing c for E[(Z2 − 1)2], Z ∼ N(0, 1), a finite constant. But∑
i

(∆it)
2 ≤ max

i
∆it×

∑
i

∆it = |πn|t,

giving
E[(πnW − t)2] ≤ ct|π|n → 0 (|πn| → 0). //

Remark. 1. From convergence in mean square, one can always extract an
a.s. convergent subsequence.
2. The conclusion above extends in full generality to a.s. convergence, but
an easy proof requires the reversed martingale convergence theorem, which
we omit.
3. There is an easy extension to a.s. convergence under the extra restriction∑

n |πn| < ∞, using the Borel-Cantelli lemma and Chebychev’s inequality.
4. If we consider the theorem over [0, t+dt], [0, t] and subtract, we can write
the result formally as

(dWt)
2 = dt.

This can be regarded either as a convenient piece of symbolism, or acronym,
or as the essence of Itô calculus (Ch. III below).
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Note.
The quadratic variation as defined above involves the limit of the quadratic

variation over every sequence of partitions whose maximal subinterval length
tends to zero. We stress that this is not the same as taking the supremum
of the quadratic variation over all partitions – indeed, this would give ∞,
rather than t (by the law of the iterated logarithm for Brownian motion).
This second definition – strong quadratic variation – is the appropriate one
in some contexts, such as Lyons’ theory of rough paths, but we shall not need
it, and quadratic variation will always be defined in the first sense here.

Suppose now we look at the ordinary variation
∑ |∆W (t)|, rather than the

quadratic variation
∑
(∆W (t))2. Then instead of

∑
(∆W (t))2 ∼ ∑

∆t = t,
we get

∑ |∆W (t)| ∼ ∑√
∆t. Now for ∆t small,

√
∆t is of a larger order of

magnitude than ∆t. So if
∑

∆t = t converges,
∑√

∆t diverges to +∞. This
gives:

Corollary (Lévy). The paths of Brownian motion are of unbounded vari-
ation – their variation is +∞ on every interval.

Because of the above corollary, we will not be able to define integrals
with respect to Brownian motion by a path-by-path procedure (for BM the
relevant convergence in the above results in fact takes place with probability
one). However, turning to the class of square-integrable continuous mar-
tingales cM2 (continuous square-integrable martingales), we find that these
processes have finite quadratic variation, but all variations of higher order
are zero and, except for trivial cases, all variations of lower order are infinite
with positive probability. So quadratic variation is indeed the right variation
to study. Returning to Brownian motion, we observe that for s < t,

E(W (t)2|Fs) = E([W (s) + (W (t)−W (s))]2

= W (s)2 + 2W (s)E[(W (t)−W (s))|Fs] + E[(W (t)−W (s))2|Fs]

= W (s)2 + 0 + (t− s).

So W (t)2 − t is a martingale. This shows that the quadratic variation is the
adapted increasing process in the Doob-Meyer decomposition of W 2 (recall
that W 2 is a nonnegative submartingale and thus can be written as the sum
of a martingale and an adapted increasing process). This result extends to
the class cM2 (and indeed to the broader class of local martingales – below).
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Theorem. A martingale M ∈ cM2 is of finite quadratic variation ⟨M⟩, and
⟨M⟩ is the unique continuous increasing adapted process vanishing at zero
with M2 − ⟨M⟩ a martingale.

The quadratic variation result above leads to Lévy’s 1948 result, the mar-
tingale characterization of Brownian motion. Recall that W (t) is a continu-
ous martingale with respect to its natural filtration (Ft) and with quadratic
variation t. There is a remarkable converse, due to Lévy:

Theorem (Lévy’s Martingale Characterization of BM). If M is any
continuous, square-integrable (local) (Ft)-martingale with M(0) = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

Expressed differently this is:
If M is any continuous, square-integrable (local) (Ft)-martingale withM(0) =
0 and M(t)2 − t a martingale, then M is an (Ft)-Brownian motion.

In view of the fact that ⟨W ⟩(t) = t, a further useful fact about Brownian
motion may be guessed: If M is a continuous martingale then there exists a
Brownian motion W (t) such that M(t) = W (⟨M⟩(t)), i.e. the martingale M
can be transformed into a Brownian motion by a random time-change. These
results already imply that Brownian motion is the fundamental continuous
martingale.

10. Properties of Brownian Motion
Brownian Scaling.

For any c > 0, write

Wc(t) := c−1W (c2t), t ≥ 0

with W BM . Then Wc is Gaussian, with mean 0, variance c−2 × c2t = t and
covariance

cov(Wc(s),Wc(t)) = c−2E(Wc(s),Wc(t)) = c−2 min(c2s, c2t)

= min(s, t) = cov(W (s),W (t)).

Also Wc has continuous paths, as W does. So Wc has all the properties of
Brownian motion. So, Wc is Brownian motion. It is said to be derived from
W by Brownian scaling with scale-factor c > 0. Since

(W (ut) : t ≥ 0) = (
√
uW (t) : t ≥ 0) in law, ∀u > 0,
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W is called self-similar with index 1/2. Brownian motion is thus a fractal. A
piece of Brownian path, looked at under a microscope, still looks Brownian,
however much we ‘zoom in and magnify’. Of course, the contrast with a
function f with some smoothness is stark: a differentiable function begins
to look straight under repeated zooming and magnification, because it has a
tangent.
Time-Inversion.

Write
Xt := tW (1/t).

Then X has mean 0 and covariance

cov(Xs, Xt) = st.cov(B(1/s), B(1/t)) = st.min(1/s, 1/t) = min(t, s) = min(s, t).

Since X has continuous paths also, as above, X is Brownian motion. We
say that X is obtained from W by time-inversion. This property is useful in
transforming properties of BM ‘in the large’ (t → ∞) to properties ‘in the
small’, or local properties (t → 0). For example, one can translate the law
of the iterated logarithm (LIL) from global to local form.
Zero set Z of Brownian motion

This has many interesting properties. Z is:
closed (by continuity of BM);
perfect – contains all its limit point (again, by continuity of BM – these two
give a sense in which Z is ‘big’ topologically);
uncountable (this gives a sense in which Z is big from the point of view of
cardinality);
Lebesgue-null (this gives a sense in which Z is small from the point of view
of Measure Theory);
a fractal – self-similar of index 1

2
(from Brownian scaling). Indeed, Z has

Hausdorff dimension 1
2
(which gives a precise sense in which Z is ‘half-

dimensional’ – and the right way in which to assess the ‘size’ of Z).
If BM starts at 0, with probability 1 there are infinitely many zeros of

BM in every time-interval (0, ϵ), however small ϵ > 0 is. And by the strong
Markov property, if we start BM afresh at each of these, it behaves like t = 0
above (so there are infinitely many zeros in every interval to its right ...).
One is left wondering how BM can ever escape from zero – but it does! The
relevant theory here is Itô’s theory of Brownian excursions (more generally,
of excursions of a Markov process) of 1971 – but this would take us too far
afield here.
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III. Stochastic integration; Itô calculus.

1. Stochastic Integration
Stochastic integration was introduced by K. Itô in 1944, hence its name

Itô calculus. It gives a meaning to∫ t

0
XdY =

∫ t

0
X(s, ω)dY (s, ω),

for suitable stochastic processes X and Y , the integrand and the integrator.
We shall confine our attention here mainly to the basic case with integrator
Brownian motion: Y = W . Much greater generality is possible; see e.g. [P]
for details.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of Ch. I. For, the Lebesgue-Stieltjes integrals described there have as
integrators the difference of two monotone (increasing) functions, which are
locally of finite variation. But we know from Ch. II that Brownian motion
is of infinite (unbounded) variation on every interval. So Lebesgue-Stieltjes
and Itô integrals must be fundamentally different.

In view of the above, it is quite surprising that Itô integrals can be de-
fined at all. But if we take for granted Itô’s fundamental insight that they
can be, it is obvious how to begin and clear enough how to proceed. We
begin with the simplest possible integrands X, and extend successively much
as we extended the measure-theoretic integral of Ch. I.
Indicators.

If X(t, ω) = I[a,b](t), there is exactly one plausible way to define
∫
XdW :

∫ t

0
X(s, ω)dW (s, ω) :=


0 if t ≤ a,
W (t)−W (a) if a ≤ t ≤ b,
W (b)−W (a) if t ≥ b.

Simple Functions.
Extend by linearity: if X is a linear combination of indicators, X =∑n

i=1 ciI[ai,bi], we should define∫ t

0
XdW :=

n∑
i=1

ci

∫ t

0
I[ai,bi]dW.

Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
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expressions above.
We begin again, this time calling a stochastic process X simple if there

is a partition 0 = t0 < t1 < . . . < tn = T < ∞ and uniformly bounded
Ftn-measurable random variables ξk (|ξk| ≤ C for all k = 0, . . . , n and ω, for
some C) and if X(t, ω) can be written in the form

X(t, ω) = ξ0(ω)I{0}(t) +
n∑

i=0

ξi(ω)I(ti,ti+1](t) (0 ≤ t ≤ T, ω ∈ Ω).

Then if tk ≤ t < tk+1,

It(X) :=
∫ t
0 XdW =

∑k−1
i=0 ξiW (ti+1)−W (ti)) + ξk(W (t)−W (tk))

=
∑n

i=0 ξi(W (t ∧ ti+1)−W (t ∧ ti)).

Note that by definition I0(X) = 0 a.s. We collect some properties of the
stochastic integral defined so far:

Lemma. (i) It(aX + bY ) = aIt(X) + bIt(Y ).
(ii) E(It(X)|Fs) = Is(X) a.s. (0 ≤ s < t < ∞), hence It(X) is a
continuous martingale.

Proof. (i) follows from the fact that linear combinations of simple functions
are simple.
(ii) There are two cases to consider.
(a) Both s and t belong to the same interval [tk, tk+1). Then

It(X) = Is(X) + ξk(W (t)−W (s)).

But ξk is Ftk-measurable, so Fs-measurable (tk ≤ s), so independent of
W (t)−W (s) (independent increments property of W ). So

E(It(X)|Fs) = Is(X) + ξkE(W (t)−W (s)|Fs) = Is(X).

(b) s < t belongs to a different interval from t: s ∈ [tm, tm+1) for some m < k.
Then

It(X) = Is(X)+ξm(W (tm+1)−W (s))+
k−1∑

i=m+1

ξi(W (ti+1)−W (ti))+ξk(W (t)−W (tk))
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(if k = m + 1, the sum on the right is empty, and does not appear).
Take E(.|Fs) on the right. The first term gives Is(X). The second gives
ξmE[(W (tm+1) −W (s))|Fs] = ξm · 0 = 0, as ξm is Fs-measurable, and simi-
larly so do the third and fourth, completing the proof. //

Note. The stochastic integral for simple integrands is essentially a martingale
transform.

We pause to note a property of square-integrable martingales which we
shall need below. Call M(t) − M(s) the increment of M over (s, t]. Then
for a martingale M , the product of the increments over disjoint intervals has
zero mean. For, if s < t ≤ u < v,

E[(M(v)−M(u))(M(t)−M(s))] = E[E((M(v)−M(u))(M(t)−M(s))|Fu)]

= E[(M(t)−M(s))E((M(v)−M(u))|Fu)],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the left-hand side is zero, as required.

We now can add further properties of the stochastic integral for simple
functions X.

Lemma. (i) We have the Itô isometry

E[(It(X))2], or E[(
∫ t

0
XdW )2],= E(

∫ t

0
X(s)2ds).

(ii) E((It(X)− Is(X))2|Fs) = E(
∫ t
s X(u)2du) a.s.

Proof. We only show (i); the proof of (ii) is similar. The left-hand side in (i)
above is E(It(X) · It(X)), i.e.

E([
k−1∑
i=0

ξi(W (ti+1)−W (ti)) + ξk(W (t)−W (tk))]
2).

Expanding out the square, the cross-terms have expectation zero by above,
leaving

E(
k−1∑
i=0

ξ2i (W (ti+1)−W (ti))
2 + ξ2k(W (t)−W (tk))

2).
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Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(W (ti+1)−W (ti)) =
ti+1 − ti. So we obtain

k−1∑
i=0

E(ξ2i )(ti+1 − ti) + E(ξ2k)(t− tk).

This is (using Fubini’s theorem)
∫ t
0 E(X(u)2)du = E(

∫ t
0 X(u)2du), as re-

quired. //

The Itô isometry above suggests that
∫ t
0 XdW should be defined only for

processes with ∫ t

0
E(X(u)2)du < ∞ for all t. (∗)

We then can transfer convergence on a suitable L2-space of stochastic pro-
cesses to a suitable L2-space of martingales. This gives us an L2-theory of
stochastic integration, for which Hilbert-space methods are available.
Approximation.

By analogy with the integral of Ch. I, we seek a class of integrands suit-
ably approximable by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of (B([0,∞))×F)-measurable,
(Ft)- adapted processes X with

∫ t
0 E(X(u)2)du < ∞ for all t > 0.

(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t
0 XdW may be defined as the

limit of It(Xn) =
∫ t
0 XndW .

(iii) The properties from both lemmas above remain true for the stochastic
integral

∫ t
0 XdW defined by (i) and (ii).

We must omit detailed proofs of these assertions here. The key technical
ingredients needed are Hilbert-space methods in spaces defined by integrals
related to the quadratic variation of the integrator (which is just t in our
Brownian motion setting here) and the Kunita-Watanabe inequalities ([P],
61).

Without (∗), the stochastic integral need not yield a mg, but only a local
martingale. This is a process M such that there exists a sequence of stopping
times Tn ↑ +∞ such that each of the stopped and shifted processes MTn−M0

is a (true) martingale. Local mgs are much more general than (true) mgs.
They are used to define semi-martingales – sums of a local mg and a FV
process; these are the most general stochastic integrators.
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