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Example. We calculate
∫
W (u)dW (u). We start by approximating the inte-

grand by a sequence of simple functions.

Xn(u) =


W (0) = 0 if 0 ≤ u ≤ t/n,
W (t/n) if t/n < u ≤ 2t/n,
...

...
W ((n− 1)t/n) if (n− 1)t/n < u ≤ t.

By definition,

∫ t

0
W (u)dW (u) = lim

n→∞

n−1∑
k=0

W (kt/n)(W ((k + 1)t/n)−W (kt/n)).

Replacing W (kt/n) by 1
2
(W ((k + 1)t/n) + W (kt/n)) − 1

2
(W ((k + 1)t/n) −

W (kt/n)), the RHS is

∑ 1

2
(W ((k + 1)t/n) +W (kt/n)).(W ((k + 1)t/n)−W (kt/n))

−
∑ 1

2
(W ((k + 1)t/n)−W (kt/n)).(W ((k + 1)t/n)−W (kt/n)).

The first sum is
∑ 1

2
(W ((k + 1)t/n)2 − W (kt/n)2), which telescopes (as a

sum of differences) to 1
2
W (t)2 (W (0) = 0). The second sum is

1
2

∑
(W (k+1)t/n)−W (kt/n))2, an approximation to the quadratic variation

of W on [0, t], which tends to 1
2
t by Lévy’s theorem on the QV. Combining,∫ t

0
W (u)dW (u) =

1

2
W (t)2 − 1

2
t.

Note the contrast with ordinary (Newton-Leibniz) calculus! Itô calculus re-
quires the second term on the right – the Itô correction term – which arises
from the quadratic variation of W .

One can construct a closely analogous theory for stochastic integrals with
the Brownian integrator W above replaced by a square-integrable martingale
integrator M . The properties above hold, with the Lemma (i) replaced by

E[(
∫ t

0
X(u)dM(u))2] = E[

∫ t

0
X(u)2d⟨M⟩(u)].
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The natural class of integrands X to use here is the class of predictable pro-
cesses (a slight extension of left-continuity of sample paths).
Quadratic Variation, Quadratic Covariation.

We shall need to extend quadratic variation and quadratic covariation to
stochastic integrals. The quadratic variation of It(X) =

∫ t
0 X(u)dW (u) is∫ t

0 X(u)2du. This is proved in the same way as the case X ≡ 1, that W has
quadratic variation process t. More generally, if Z(t) =

∫ t
0 X(u)dM(u) for a

continuous martingale integrator M , then ⟨Z⟩(t) =
∫ t
0 X

2(u)d⟨M⟩(u). Simi-
larly (or by polarization), if Zi(t) =

∫ t
0 Xi(u)dMi(u) (i = 1, 2), ⟨Z1, Z2⟩(t) =∫ t

0 X1(u)X2(u)d⟨M1,M2⟩(u).
Semi-martingales.

It turns out that semi-martingales give the natural class of stochastic
integrators: one can define the stochastic integral∫ t

0
H(u)dX(u) =

∫ t

0
H(u)dM(u) +

∫ t

0
H(u)dA(u)

for predictable integrands H (as above), and for semi-martingale integrators
X – but for no larger class of integrators, if one is to preserve reasonable
convergence and approximation properties for the operation of stochastic in-
tegration. For details, see e.g. [P].

With integrands as general as above, stochastic integrals are no longer
martingales in general, but only local martingales (see e.g. [P]: martingales on
each [0, Tn], for some sequence of stopping times Tn ↑ ∞). For our purposes,
one loses little by thinking of bounded integrands (recall that we usually
have a finite time horizon T , the expiry time of an option, and that bounded
processes are locally integrable, but not integrable in general).

2. Itô’s Lemma
Suppose that b is adapted and locally integrable (so

∫ t
0 b(s)ds is defined

as an ordinary integral, as in I.4), and σ is adapted and measurable with∫ t
0 E(σ(u)2)du < ∞ for all t (so

∫ t
0 σ(s)dW (s) is defined as a stochastic inte-

gral, as above). Then

X(t) := x0 +
∫ t

0
b(s)ds+

∫ t

0
σ(s)dW (s)

defines a stochastic process X with X(0) = x0 (which is often called an Itô
process). It is customary, and convenient, to express such an equation sym-
bolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt+ σ(t)dW (t), X(0) = x0. (∗)
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Now suppose f : R → R is of class C2. The question arises of giving a
meaning to the stochastic differential df(X(t)) of the process f(X(t)), and
finding it. Given a partition P of [0, t], i.e. 0 = t0 < t1 < . . . < tn = t, we
can use Taylor’s formula to obtain

f(X(t))− f(X(0)) =
n−1∑
k=0

f(X(tk+1))− f(X(tk))

=
n−1∑
k=0

f ′(X(tk))∆X(tk) +
1

2

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))
2

with 0 < θk < 1. We know that
∑
(∆X(tk))

2 → ⟨X⟩(t) in probability (so,
taking a subsequence, with probability one), and a little more effort gives

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))
2 →

∫ t

0
f ′′(X(u))d⟨X⟩(u).

The first sum is easily recognized as an approximating sequence of a stochas-
tic integral (compare the example above), giving

n−1∑
k=0

f ′(X(tk))∆X(tk) →
∫ t

0
f ′(X(u))dX(u) :

Theorem (Basic Itô Formula). If X has stochastic differential given by
(∗) and f ∈ C2, then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))d⟨X⟩(t),

or writing out the integrals,

f(X(t)) = f(x0) +
∫ t

0
f ′(X(u))dX(u) +

1

2

∫ t

0
f ′′(X(u))d⟨X⟩(u).

More generally, suppose that f : R2 → R is a function, continuously
differentiable once in its first argument (which will denote time), and twice in
its second argument (space): f ∈ C1,2. By the Taylor expansion of a smooth
function of several variables we get for t close to t0 (we use subscripts to
denote partial derivatives: ft := ∂f/∂t, ftx := ∂2f/∂t∂x):

f(t,X(t)) = f(t0, X(t0))

+(t− t0)ft(t0, X(t0)) + (X(t)−X(t0))fx(t0, X(t0))

+1
2
(t− t0)

2ftt(t0, X(t0)) +
1
2
(X(t)−X(t0))

2fxx(t0, X(t0))

+(t− t0)(X(t)−X(t0))ftx(t0, X(t0)) + . . . ,
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which may be written symbolically as

df = ftdt+ fxdX +
1

2
ftt(dt)

2 + ftxdtdX +
1

2
fxx(dX)2 + . . . .

In this, we substitute dX(t) = b(t)dt+ σ(t)dW (t) from above, to obtain

df = ftdt+ fx(bdt+ σdW )

+1
2
ftt(dt)

2 + ftxdt(bdt+ σdW ) + 1
2
fxx(bdt+ σdW )2 + . . .

Now using the formal multiplication rules dt·dt = 0, dt·dW = 0, dW ·dW = dt
(which are just shorthand for the corresponding properties of the quadratic
variations), we expand

(bdt+ σdW )2 = σ2dt+ 2bσdtdW + b2(dt)2 = σ2dt+ higher-order terms

to get finally

df =
(
ft + bfx +

1

2
σ2fxx

)
dt+ σfxdW + higher-order terms.

As above, the higher-order terms are irrelevant, and summarizing, we obtain
Itô’s lemma, the analogue for the Itô or stochastic calculus of the chain rule
for ordinary (Newton-Leibniz) calculus:

Theorem (Itô’s Lemma). If X(t) has stochastic differential given by (∗),
then f = f(t,X(t)) has stochastic differential

df =
(
ft + bfx +

1

2
σ2fxx

)
dt+ σfxdW.

That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +
∫ t

0
(ft + bfx +

1

2
σ2fxx)dt+

∫ t

0
σfxdW. //

Corollary. E(f(t,X(t))) = f0 +
∫ t
0 E(ft + bfx +

1
2
σ2fxx)dt.

Proof.
∫ t
0 σf2dW is a stochastic integral, so a (local) martingale, so its ex-

pectation is constant (= 0, as it starts at 0). //
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Note. Powerful as it is in the setting above, Itô’s lemma really comes into
its own in the more general setting of semi-martingales (of which X above is
an important example). It says there that if X is a semi-martingale and f is
a smooth function as above, then f(t,X(t)) is also a semi-martingale. The
ordinary differential dt gives rise to the finite-variation part, the stochastic
differential gives rise to the martingale part. This closure property under
very general non-linear operations is very powerful and important.
Itô Lemma in Higher Dimensions.

If f(t, x1, . . . , xd) is C1 in its zeroth (time) argument t and C2 in its
remaining d space arguments xi, and M = (M1, . . . ,Md) is a continuous
vector martingale, then (writing fi, fij for the first partial derivatives of
f with respect to its ith argument and the second partial derivatives with
respect to the ith and jth arguments) f(t,M(t)) has stochastic differential

df(t,M(t)) = f0(t,M(t))dt+
d∑

i=1

fi(t,M(t))dMi(t)+
1

2

d∑
i,j=1

fij(t,M(t))d⟨Mi,Mj⟩(t).

Application. The case f(x) = x2 gives

W (t)2 = W (0)2 +
∫ t

0
2W (u)dW (u) +

1

2

∫ t

0
2du,

which after rearranging is just our earlier example.

3. Geometric Brownian Motion
Now that we have both BM W and Itô’s Lemma to hand, we can in-

troduce the most important stochastic process for us, a relative of BM –
geometric (or exponential, or economic) BM.

To model the stock-price evolution, we use the stochastic differential equa-
tion

dS(t) = S(t)(µdt+ σdW (t)), S(0) > 0,

due to Itô in 1944. (Interpretation: the return dS/S over a short time-interval
is the sum of the deterministic term µdt and the random term σdW .) This
corrects Bachelier’s earlier attempt of 1900 (he did not have the factor S(t)
on the right - missing the interpretation in terms of returns, and leading to
negative stock prices!) Incidentally, Bachelier’s work served as Itô’s motiva-
tion in introducing Itô calculus. The mathematical importance of Itô’s work
was recognised early, and led on to the work of Doob in 1953 [D], Meyer
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(1960s on) and many others. The economic importance of geometric Brown-
ian motion was recognized by Paul A. Samuelson in his work from 1965 on,
for which Samuelson received the Nobel Prize in Economics in 1970, and by
Robert Merton, in work for which he was similarly honoured in 1997.

The differential equation above has the unique solution

S(t) = S(0) exp
{(

µ− 1

2
σ2
)
t+ σdW (t)

}
.

For, writing

f(t, x) := exp
{(

µ− 1

2
σ2
)
t+ σx

}
,

we have

ft =
(
µ− 1

2
σ2
)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has

dx = dW (t), (dx)2 = dt.

Thus Itô’s lemma gives

df(t,W (t)) = ftdt+ fxdW (t) + 1
2
fxx(dW (t))2

= f
((
µ− 1

2
σ2
)
dt+ σdW (t) + 1

2
σ2dt

)
= f(µdt+ σdW (t)),

so f(t,W (t)) is a solution of the stochastic differential equation, and the ini-
tial condition f(0,W (0)) = S(0) as W (0) = 0, giving existence.

For uniqueness, we need the stochastic (or Doléans, or Doléans-Dade) ex-
ponential (below), giving Y = E(X) = exp{X− 1

2
⟨X⟩} (with X a continuous

semi-martingale) as the unique solution to the stochastic differential equation

dY (t) = Y (t−)dX(t), Y (0) = 1.

(Incidentally, this is one of the few cases where a stochastic differential equa-
tion can be solved explicitly. Usually we must be content with an existence
and uniqueness statement, and a numerical algorithm for calculating the solu-
tion.) Thus S(t) above is the stochastic exponential of µt+σW (t), Brownian
motion with mean (or drift) µ and variance (or volatility) σ2. In particular,

logS(t) = logS(0) +
(
µ− 1

2
σ2
)
t+ σW (t)
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has a normal distribution. Thus S(t) itself has a lognormal distribution. This
geometric Brownian motion model, and the log-normal distribution that it
entails, are the basis for the Black-Scholes model for stock-price dynamics in
continuous time.

4. Stochastic Calculus for Black-Scholes Models; Girsanov’s theo-
rem

In this section we collect the main tools for the analysis of financial mar-
kets with uncertainty modelled by Brownian motions.

Consider first independentN(0, 1) random variables Z1, . . . , Zn on a prob-
ability space (Ω,F ,P). Given a vector γ = (γ1, . . . , γn), consider a new
probability measure Q on (Ω,F) defined by

Q(dω) = exp

{
n∑

i=1

γiZi(ω)−
1

2

n∑
i=1

γ2
i

}
P (dω).

As exp{.} > 0 and integrates to 1, as
∫
exp{γiZi}dP = exp{1

2
γ2
i }, this is a

probability measure. It is also equivalent to P (has the same null sets), again
as the exponential term is positive. Also

Q(Zi ∈ dzi, i = 1, . . . , n) = exp

{
n∑

i=1

γiZi −
1

2

n∑
i=1

γ2
i

}
P (Zi ∈ dzi, i = 1, . . . , n)

= (2π)−n/2 exp

{
n∑

i=1

γizi −
1

2

n∑
i=1

γ2
i −

1

2

n∑
i=1

z2i

}
n∏

i=1

dzi

= (2π)−n/2 exp

{
−1

2

n∑
i=1

(zi − γi)
2

}
dz1 . . . dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(γi, 1) under Q. Thus the effect of the change of measure P → Q,
from the original measure P to the equivalent measure Q, is to change the
mean, from 0 = (0, . . . , 0) to γ = (γ1, . . . , γn).

This result extends to infinitely many dimensions. Let W = (W1, . . .Wd)
be a d-dimensional Brownian motion defined on a stochastic basis with the
filtration satisfying the usual conditions. Let (γ(t) : 0 ≤ t ≤ T ) be a measur-
able, adapted d-dimensional process with

∫ T
0 γi(t)

2dt < ∞ a.s., i = 1, . . . , d,
and define the process (L(t) : 0 ≤ t ≤ T ) by

L(t) = exp
{
−
∫ t

0
γ(s)′dW (s)− 1

2

∫ t

0
∥γ(s)2∥ds

}
.
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Then L is continuous, and, being the stochastic exponential of−
∫ t
0 γ(s)

′dW (s),
is a local martingale. Given sufficient integrability on the process γ, L will
in fact be a (continuous) martingale. For this, Novikov’s condition suffices:

E

(
exp

{
1

2

∫ T

0
∥γ(s)2∥ds

})
< ∞.

We are now in the position to state a version of Girsanov’s theorem, which
is one of the main tools in studying continuous-time financial market models.

Theorem (Girsanov). Let γ be as above and satisfy Novikov’s condition;
let L be the corresponding continuous martingale. Define the processes W̃i,
i = 1, . . . , d by

W̃i(t) := Wi(t) +
∫ t

0
γi(s)ds, (0 ≤ t ≤ T ), i = 1, . . . , d.

Then under the equivalent probability measure Q defined on (Ω,FT ) with
Radon-Nikodym derivative

dQ

dP
= L(T ),

the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.

In particular, for γ(t) constant (= γ), change of measure by introducing
the Radon-Nikodym derivative exp{−γW (t)− 1

2
γ2t } corresponds to a change

of drift from c to c − γ. If (Ft) is the Brownian filtration (basically Ft =
σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual conditions) any pair
of equivalent probability measures Q ∼ P on F = FT is a Girsanov pair, i.e.

dQ

dP

∣∣∣∣∣
Ft

= L(t)

with L defined as above.
Note. The main application of the Girsanov theorem in mathematical finance
is the change of measure in the Black-Scholes model of a financial market
to obtain the risk-neutral martingale measure, under which discounted asset
prices give prices of derivatives (options etc.). The relevant mathematics
needed includes the next result (Brownian Martingale Representation Theo-
rem).
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