ma414prob10.tex

PROBLEMS 10. 15.3.2012

Q1. (i) For N Poisson distributed with parameter λ and X_1, X_2, \ldots independent of each other and of N, each with distribution F with mean μ , variance σ^2 and characteristic function $\phi(t)$, show that the compound Poisson distribution of

$$Y := X_1 + \ldots + X_N$$

has characteristic function $\psi(t) = \exp\{-\lambda(1-\phi(t))\}$, mean $\lambda\mu$ and variance $\lambda E[X^2]$.

(ii) Obtain the mean and variance of Y also from the Conditional Mean Formula and the Conditional Variance Formula.

Q2. For $B = (B_t)$ Brownian motion and $M = (M_t)$, where

$$M_t := (B_t^2 - t)^2 - 4 \int_0^t B_s^2 ds,$$

(i) find the stochastic differential of M. Hence or otherwise, express M as an Itô integral, and show that M is a continuous martingale starting at 0. (ii) Find the quadratic variation $[M]_t$ of M_t .

NHB