ma414prob6.tex

MA414 PROBLEMS 6. 16.2.2012

Recall the following three fundamental convergence theorems. Lebesgue's Monotone Convergence Theorem. If X_n are non-negative random variables and X_n increases to X, then $E[X_n]$ increases to E[X]. Fatou's Lemma. If X_n are integrable and bounded below, then $E[\liminf X_n] \leq \liminf E[X_n]$.

Lebesgue's Dominated Convergence Theorem. If $X_n \to X$ and $|X_n| \leq Y$ with $E[Y] < \infty$, then $E[X_n] \to E[X]$.

Prove the following conditional forms, where C denotes a σ -field.

Q1 (Conditional monotone convergence). If $X_n \ge 0$, $X_n \uparrow X$ and $X \in L_1$, show that

$$E[X_n|\mathcal{C}] \uparrow E[X|\mathcal{C}]$$

Q2 (Conditional Fatou Lemma). If $X_n \ge 0, X_n \in L_1$, show that

 $E[\liminf X_n|\mathcal{C}] \leq \liminf E[X_n|\mathcal{C}].$

Q3 (Conditional Dominated Convergence). If $|X_n| \leq Y, Y \in L_1, X_n \to X$, show that

$$E[X_n|\mathcal{C}] \to E[X|\mathcal{C}].$$

For $p \ge 1$, call $q \ge 1$ the *conjugate index* to p if

$$\frac{1}{p} + \frac{1}{q} = 1$$

(so p = 1 iff $q = \infty$). We write L_p for the space of *p*th-power integrable functions f – those with $\int |f|^p d\mu < \infty$ (or $E[|X|^p] < \infty$ for a probability measure). We quote (for proofs, see e.g. [S]):

Hölder's inequality: for p > 1, if $f \in L_p$, $g \in L_q$, then $fg \in L_1$, and

$$\int |fg| \le (\int |f|^p)^{1/p} (\int |g|^q)^{1/q};$$

Minkowski's inequality: for $p \ge 1$, if $f, g \in L_p$, then $f + g \in L_p$, and

$$(\int |f+g|^p)^{1/p} \le (\int |f|^p)^{1/p} + (\int |g|^p)^{1/p}.$$

We write $||f||_p := (\int |f|^p)^{1/p}$, called the *p*-norm of f. Then Minkowski's Inequality says that L_p is a normed (vector) space under this norm, while Hölder's inequality says that

$$(f,g) := |\int fg| \le \int |fg| = ||fg||_1 \le ||f||_p ||g||_q,$$

giving a duality between L_p and L_q for p, q > 1. Note that p = q iff p = q = 2; then L_2 is called (a) *Hilbert space*, and the above gives an *inner product* on L_2 . (Note that L_2 is the only *self-dual* L_p -space.)

Q4. Show that for x, y > 0, p, q > 1 conjugate indices,

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Q5. Conditional Hölder Inequality.

If p > 1 with conjugate index $q, X \in L_p, Y \in L_q$, show that

$$|E[XY|\mathcal{C}]| \le (E[|X|^p|\mathcal{C})^{1/p} \cdot (E[|Y|^q|\mathcal{C})^{1/q}.$$

NHB