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MA414 SOLUTIONS 2. 26.1.2012

QL. -
fig := XF = B[ X = as. (n— o00).

The kth central moment is i) := (X — X)k. Then

= (X - X))k = Zﬁ(@)Xi(—)k—i(X)k—i
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By SLLN, as n — oo this tends a.s. to
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Equating coefficients of ¢ gives k; = p. Centring at the mean multiplies the
MGF M (t) by e #, so subtracts ut from the CGF, so leaves coefficients of
powers of t* unchanged for k > 2, s0 Kk = Ky for k > 2, giving (i). Equating
coefficients of * gives ko = 02, giving (ii). We can now take u = 0 w.l.o.g.:

1 1 1
M(t) =1+ 50%2 + éugﬁ + ﬂpgfl +...

Take logs and use log(1 + z) =z — $2 + .. :

—_

1 1 1 1
K (t) =log M(1) = 5o + it + gt + . = S[5o% %
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As K(t) = ¥ rit*/E!, equating coefficients of t* gives k3 = 3, which is (iii).
Equating coefficients of t* gives k4 = ) — 30* (3 8s are 24 = 4!), which is
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(iv). Finally, X is normal N (p, o) iff M (t) = eF+o°%/2 iff K (t) = put + o*t%/2
iff all cumulants higher than the second vanish.

Q3. Take f(z) := e *"/2. This is entire (has no singularities). So for any con-
tour v, [, f =0, by Cauchy’s Residue Theorem (or, use Cauchy’s Theorem).
Take v the rectangle with vertices R, R + iy, —R + 1y, —R, with sides 1,
the interval [—R, R], 72 the vertical line from R to R + iy, 3 the horizontal
line from R + iy to —R + iy, 74 the vertical line from —R + iy to —R. So
Z‘llfifzo. On s, y4: z=+R+iduy (0 <u<1),

F(z) = exp{—(£R + iuy)?/2} = e /2w 2l _, ) (R — o),
as [e¥fw] = 1. So [, f = 0, [,f = 0 (R — o0). Also [ f —
[ e **/2dx = \/27 as R — c0). Combining,

/ f— /_OO e V2 ey = —\/27 (R — 00).
3 0

So (dividing by v27 and by e¥*/2 and reversing the direction of integration)
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/ € ey = V2,

—oco /2T

The RHS is real, so the LHS is real. Take complex conjugates:

00 6—:22/2

—oo 1/ 2 '
This gives the characteristic function (CF) of the standard normal density
o(x) = e **/2/\/2x (the CF is the Fourier transform of a probability den-
sity).

. 2
e dy = eV /2,

Q4. (i) If F(t) := [;° e * cosatdx,

F(t) = /Ooo e " cosxtdr = — /0 cos rtde™™
= —[cosat.e”"|5° + /OOO e "(—tsinat)dx
= 1= t/ooo sin xtde™™
= 1+ t[sinat.e | — t/ooo e .t cosxtdx

= 1—t2/ooe_xcosxtdx: 1—1?F(t) :
0
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FY1+tH) =1,  F()=1/(1+1).
Then

/ et Ze Il dy = / cosxt.—e 1 dx + z/ sinat.—e 1"l dx
-0 2 —0 2 —00 2

o0 1
= / cos xt.ge_‘””ldx =1/(1+ %),

by above (the second integral is zero: odd integrand, symmetric limits. The
first integral is twice [;°: even integrand, symmetric limits.
Thus the characteristic function of the symmetric exponential probability
density se~1*l is 1/(1 + ¢).
(ii). Take € > 0. f(2) = 1/(n(1+2?)) (to use Jordan’s Lemma for e /(7 (1+
2%))). The only singularity inside v is at y = 7, a simple pole.
etz et —ie”
Res oD Gr1) ~ r2i - 2

By Cauchy’s Residue Theorem:
et
/f:27rz'.< ' )ze‘t.
0 2

ez/\t

/vf:/71f+/v2f—>/—o:o7r(1+x2)+o (Jordan’s Lemma).

But

This gives the result for ¢ > 0. For ¢ = 0, it is an arctan (or tan™') integral.
For t < 0: replace t by —t. //
Thus the CF of the symmetric Cauchy density 1/(7(1 4 22)) is e~ "l

Q5. The similarity between (i) and (ii) of Q4 is an instance of the Fourier In-
tegral Theorem: under suitable conditions, doing the Fourier transform twice
gets back to where we started, apart from (a) €™ first time, but e " the
second time; (b) a factor 1/2w. (There are various formulations, depending
on the class of function and type of integral — see a good book on Analysis,
or a book on Fourier Analysis .) In Q3, the function e~**/2 i its own Fourier
transform (to within the constant factor 1/v/27).
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