ma414soln6.tex

MA414 SOLUTIONS 6. 23.2.2012

Q1 (*Conditional monotone convergence*). As integration is order-preserving, so is conditional expectation. So

$$E[X_n|\mathcal{B}] \le E[X_{n+1}|\mathcal{B}] \le E[X|\mathcal{B}].$$

So $E[X_n|\mathcal{B}]$ is increasing, and bounded above, so has a limit; as $E[X_n|\mathcal{B}]$ is \mathcal{B} -measurable, so is the limit. We need to show that this limit is $E[X|\mathcal{B}]$. Now for any $B \in \mathcal{B}$,

$$\int_{B} \lim E[X_{n}|\mathcal{B}]dP = \lim \int_{B} E[X_{n}|\mathcal{B}]dP \quad \text{(Monotone Convergence)} \\ = \lim \int_{B} X_{n}dP \quad \text{(definition of conditional expectation)} \\ = \int_{B} XdP \quad \text{(Monotone Convergence)} \\ = \int_{B} E[X|\mathcal{B}]dP \quad \text{(definition of conditional expectation)}.$$

As this holds for each $B \in \mathcal{B}$, $\lim E[X_n|\mathcal{B}] = E[X|\mathcal{B}]$ follows.

Q2 (Conditional Fatour lemma). Choose any $B \in \mathcal{B}$. By Fatou's Lemma applied to $X_n.I_B$,

$$\int_{B} \liminf X_{n} dP = \int \liminf I_{B} \cdot X_{n} dP \le \liminf \int I_{B} \cdot X_{n} dP = \liminf \int_{B} X_{n} dP.$$

The extreme left and extreme right here and the definition of conditional expectation give

$$\int_{B} E[\liminf X_{n} | \mathcal{B}] dP \le \liminf \int_{B} E[X_{n} | \mathcal{B}] dP.$$

As this holds for each $B \in \mathcal{B}$,

$$E[\liminf X_n|\mathcal{B}] \le \liminf E[X_n|\mathcal{B}].$$

Q3 (Conditional dominated convergence). Choose $B \in \mathcal{B}$. By dominated convergence applied to $X_n I_B$,

$$\int_B X_n dP \to \int_B X dP.$$

By definition of conditional expectation, this says

$$\int_{B} E[X_n | \mathcal{B}] dP \to \int_{B} E[X | \mathcal{B}] dP.$$

As this holds for all $B \in \mathcal{B}$,

$$E[X_n|\mathcal{B}] \to E[X|\mathcal{B}].$$

Q4. For x, y > 0,

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.\tag{*}$$

One can check this by finding the maximum of the convex function $\phi(x) := xy - x^p/p$ (y fixed): $\phi'(x) = 0$ where $y - x^{p-1} - 0$, $x = y^{1/(p-1)}$. There,

$$\phi(x) = y^{\frac{1}{p-1}+1} - \frac{y^{\frac{p}{p-1}}}{p} = y^{\frac{p}{p-1}}(1-\frac{1}{p}) = y^{\frac{p}{p-1}}/\frac{p}{p-1} = y^q/q,$$

a maximum (check).

Q5 (Conditional Hölder Inequality). By assumption, $f^p \in L^1$, $g^q \in L^1$, so $fg \in L^1$ by (*). So all three conditional expectations are defined. By (*),

$$\frac{|f|}{\left(E[|f|^p|\mathcal{B}]\right)^{1/p}} \cdot \frac{|g|}{\left(E[|g|^q|\mathcal{B}]\right)^{1/q}} \le \frac{|f|^p}{pE[|f|^p|\mathcal{B}]} + \frac{|g|^q}{qE[|f|^p|\mathcal{B}]}$$

on the set B where both denominators on LHS are positive. This set B is in \mathcal{B} , so we can take $E[.|\mathcal{B}]$ above, to get

$$\frac{E[|fg||\mathcal{B}]}{(E[|f|^p|\mathcal{B}])^{1/p} \cdot (E[|g|^q|\mathcal{B}])^{1/q}} \le \frac{1}{p} + \frac{1}{q} = 1$$

on B. As $|E[fg|\mathcal{B}]| \leq E[|fg||\mathcal{B}]$, this gives the result on B.

The set $B_1 := \{E[|f|^p | \mathcal{B}] = 0\} \in \mathcal{B}$. So by definition of conditional expectation,

$$\int_{B_1} |f|^p dP = \int_{B_1} E[|f|^p |\mathcal{B}] dP = 0,$$

so f = 0 a.s. on B_1 ; similarly, g = 0 a.s. on the corresponding set B_2 involving g. But since $B_1 \cup B_2 = B^c$, fg = 0 on B^c . So the result holds on B^c , so on $\Omega = B \cup B^c$. //

NHB