ma414soln7.tex

MA414 SOLUTIONS 7. 1.3.2012

Q1 (*Conditional Minkowski Inequality*). This follows just as Minkowski's Inequality follows from Hölder's Inequality (for this see e.g. [S], Th. 12.2 and Cor. 12.4), but with the conditional form of Hölder's Inequality in place of the unconditional one.

Q2. Map the points n = 1, 2, 3, ... on the half-line onto the points (r, s) in the first quadrant (r, s = 1, 2, 3, ...) by 'diagonal sweep':

$$1 \to (1,1); 2 \to (2,1), 3 \to (1,2); 4 \to (3,1), 5 \to (2,2), 6 \to (1,3); 7 \to (4,1), \dots$$

(draw a picture! This is the procedure used by Cantor in 1873 to show that the rationals are countable, but used in the reverse direction.) Then for each $r = 1, 2, \ldots$,

$$U_r := \sum_{s=1}^{\infty} \epsilon_{(r,s)} / 2^s \sim U(0,1),$$

and the U_r are independent.

Q3. (i) $P(X \le x) = P(\Phi^{-1}(U) \le x) = P(U \le \Phi(x)) = x$, as $U \sim U(0, 1)$, so $X \sim N(0, 1)$.

(ii) With U_n as in Q2, $X_n := \Phi^{-1}(U_n) \sim N(0, 1)$ and are independent.

(iii) Then as in lectures, $B(t) := \sum_{0}^{\infty} \lambda_n \Delta_n(t) X_n$ is Brownian motion.

(iv) Splitting each U_n in (ii) into infinitely many independent U(0, 1)s as in Q2, and using each to generate a BM as in (iii), we get infinitely many independent BMs.

Q4. For
$$s \le t$$
,
 $E[B_t^2 | \mathcal{F}_s] = E[(B_s + (B_t - B_s))^2 | \mathcal{F}_s]$
 $= B_s^2 + B_s E[(B_t - B_s) | \mathcal{F}_s] + E[(B_t - B_s)^2] = B_s^2 + 0 + (t - s),$

or

$$E[B_t^2 - t|\mathcal{F}_s] = B_s^2 - s,$$

showing that $(B_t^2 - t)$ is a mg. Since B_t^2 is a submg (Problems 5 Q3: *B* a mg, x^2 convex) and *t* is increasing,

$$B_t^2 = [B_t^2 - t] + t$$

is the Doob-Meyer decomposition of the submy $B_t^2 - t$. This identifies t as the QV of BM.

NHB