spexamsolns2010.tex

STOCHASTIC PROCESSES: EXAMINATION SOLUTIONS,
12.12.2010

Q1. Theorem (Lebesgue’s monotone convergence theorem, 1902).
If f,, are non-negative measurable functions, f, 1 f, then
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(with both sides finite if f € L(u) and the RHS infinite otherwise).

Proof. For each n, choose f,; simple increasing to f, as k — oo. Then
put g = max,<j fnr. Then the g are increasing (with k), simple and
non-negative, so

grTg (k= o00)

with ¢ non-negative and measurable (as each gy is). But for n <k

Tk < gk < fi < f.

So letting k — oo,
fan<g< T

Letting n — oo, f = g. As the integral is order-preserving, by above

/fnk:du < /gkdu < /fkdu (n < k).

Let k — oo: by definition of the integral (via simple approximations),
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(as g = f). Let n — oc:
lim /fnd,ug/fdug lim /fkdu.
n—00 k—o0

As the two extremes are equal, these are equalities, proving the result. //



For s > 1,
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Replacing the infinite sum on RHS by lim, . >_7 ... = lim, f,, say, the f,
are increasing since each summand is positive. So by monotone convergence
we may interchange limit and integral on the RHS, to get 3>°3° [;° x* " te " dx.
Replacing nx by x, this is

ilo:/ooo ¥ e dx /n® = /OOO ¥ e d. ilo: 1/n® =T(s).C(s). //



Q2. Take the Lebesgue probability space ([0, 1], £, 1) modelling the uniform
distribution U]0, 1] on the unit interval (probability = length). For a ran-
dom variable X ~ U|0, 1], take its dyadic expansion X = > {°¢,/2". Thus
e = 0iff X €[0,1/2), 1 iff X € [1/2,1) (or [1/2,1]: we can omit 1, as
it carries 0 probability). If €,...,€,_1 are already defined, on the dyadic
intervals [k/2""1 (k + 1)/2" 1), split each interval into two halves: €, = 0
on the left half, 1 on the right half. This construction shows that €q,..., ¢,
are independent, coin-tossing random variables (Bernoulli with parameter
1/2: take values 0, 1 with probability 1/2 each), for each n. So the ¢, are
independent coin-tosses. Conversely, given ¢, independent coin tosses, form
X = 3%€,/2" Then X, := >"e:/2F — X a.s. The distribution function
of X,, has jumps 1/2" at k/2", k = 0,1,...,2" — 1. This ‘saw-tooth jump
function’ converges to = on [0, 1], the distribution function of U[0,1]. So
X ~U[0,1]. Soif X =>7€,/2", X ~ U|0,1] iff ¢, are independent coin
tosses — the Lebesgue probability space models both (a) length on the unit
interval and (b) infinitely many independent coin tosses.

(i) From the given UJ0, 1], we get by dyadic expansion as above a sequence
of independent coin-tosses €,. Rearrange these into a two-suffix array €, (as
with Cantor’s proof of 1873 that the rationals are countable). The €, are all
independent, so the X; := 3" €;;/2" are independent, and U|0, 1] by above.
So from one U(0,1), we get in this way infinitely many copies.

(ii) If F' is a distribution function (right-continuous; increasing from 0 at
—00 to 1 at o), define its (left-continuous) inverse function by F~1(t) :=
inf{F(x) >t} for 0 <t < 1. Then if U ~ U[0,1], X := F~}(U) ~ F. For,
{X <2} ={F'U) <z} = {U < F(x)}, which has probability F(z) as
U is uniform. By this probability integral transformation we can pass from
generating copies from the uniform distribution (say by Monte Carlo simu-
lation) to generating copies from the distribution F', in particular, standard
normals. Hence by (i) above we can then generate infinitely many indepen-
dent standard normals.

(iii) We can hence simulate a Brownian motion B = (B;) from B; = >3° A\, Z, A, (%),
with Z,, independent standard normals, A, (¢) the Schauder functions and A,
suitable normalising constants.

(iv) Similarly, using (ii) rather than (i), we may simulate infinitely many
independent Brownian motions.



Q3. A distribution is infinitely divisible (id) iff, for each n = 1,2,..., it is
the n-fold convolution of a probability distribution — equivalently, if its CF
is the nth power of the CF of a probability distribution.

The Lévy-Khintchine formula states that a probability distribution is id
iff its CF has the form exp{—V(u)}, where

1 .
W(u) = iau+ So%u + [ = 1= I(ja] < Dpu(da)

(a is real, o > 0 and the Lévy measure p satisfies [ min(1, |z|*)u(dr) < 00).
(i) o(t) = [, e /(m(1 + 2?))dz. Take 7 the semicircle in the upper half-
plane on base [~ R, R], t > 0, and consider f(z) := €™ /(7(1+ 2%)). The only
singularity inside 7 is at y = ¢, a simple pole.
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By Cauchy’s Residue Theorem:
) =e "

L f = 2mi. <_;‘;_t
/vf:[y1f+[y2f—>/—o:o7r(lex2)+o (Jordan’s Lemma).

ixt
This gives the result for ¢t > 0. For t = 0, it is an arctan (or tan™!) integral.
For ¢t < 0: replace t by —t. //

Thus the CF of the symmetric Cauchy density 1/(7(1 + 22)) is eI,

(ii) This is id, as eIl = [e[1/"]" for each n, and each [] is a CF.
(iii) Substituting p(dz) = 1/(n|z|*)dz above gives ¥(u) as the sum of two
integrals, I; over (—1,1) and I, over its complement. In I;, the fiux terms
over (—1,0) and (0, 1) cancel; we can then combine I; and I to get

But

U(u) = i/ooo(cos ur — 1)dx/2*.
This gives W' (u) = —(2/7) [y° sinuz de/z = —(2/7) [y sin tdt/t = —(2/7).7/2 =
—1. So ¥(u) = —u for u > 0. So ¥(u) = —|ul. //

For X; independent Cauchy, (X; + ...+ X,,)/n has CF [e~ /"7 = ¢~ It
the CF of X;. So (X1 + ...+ X,,)/n =4 X;. This does not contradict the
SLLN: it does not apply, as the mean of X; is undefined.



Q4. (i) For t # 0, X is Gaussian with zero mean (as B is), and continuous
(again, as B is). The covariance of B is min(s,t). The covariance of X is

cov(Xs, Xy) = cov(sB(1/s),tB(1/t))
= E[sB(1/s).tB(1/t)]
= st.E[B(1/s)B(1/t)]
= st.cov(B(1/s), B(1/t))
= st.min(1/s,1/t) = min(¢, s) = min(s, t).

This is the same covariance as Brownian motion. So, away from the origin,
X s Brownian motion, as a Gaussian process is uniquely characterized by
its mean and covariance (from the properties of the multivariate normal
distribution). So X is continuous. So we can define it at the origin by
continuity. So X is Brownian motion everywhere — X is BM.

(ii) Since Brownian motion is 0 at the origin, X (0) = 0. Since Brownian
motion is continuous at the origin, X (¢) — 0 as t — 0. This says that

tB(1/t) — 0 (t —0),

which is
B(t)/t =0 (t — 00),

as required.
By construction, Brownian motion is given by its expansion

n=0

where the Z,, are independent standard normal random variables, the A, ()
are the Schauder functions and the )\, are normalising constants. Now
A,(0) =0 for n > 1, while Ag(t) = ¢, so Ag(1) = 1. Also A\g = 1. Putting
t =1, By = Zy. So Brownian bridge is

Bo(t) := B(t) — tB(1) = B(t) — tZy :

the expansion of Brownian bridge in the Schauder functions is
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Q5. (i)

U(t) = BE[e™] = Elexp{it(X,+ ...+ Xn)}]
= Y Elexp{it(X; + ...+ Xn)}N = n].P(N =n)

— zn: e " n). Elexp{it(Xy + ... + X,)}]
— zn:e*AA"/n!.(E[exp{ztxl}])"

= > e\ /nlo(t)"

- e:;p{—)\(l—(,b(t))}-

Differentiate:
Y'(t) = P(t).A (1),
() = ')A () + (t). A" (1)
As 6(t) = Ele™], /(1) = BliXetX], ¢'(t) = E[-X?cX]. So (4(0) = 1
and) ¢'(0) = iu, ¢"(0) = —E[X?],

U(0) = A¢'(0) = Aip,
and as also ¢/(0) = iEY, this gives EY = Ap. Similarly,
V"(0) = idpidp + A¢”(0) = —\*p? — AE[X?],
and also (¢(0) =1, ¥/(0) = i\p and) ”(0) = —E[Y?]. So
var Y = E[Y?] — [EY]? = N?i® + AE[X?] — N p? = AE[X?].

(ii) Given N, Y = X; 4+ ... + Xy has mean NEX = Ny and variance
N var X = No?. As N is Poisson with parameter X\, N has mean \ and
variance A. So by the Conditional Mean Formula,

EY = E[E(Y|N)] = E[Ny] = M.
By the Conditional Variance Formula,
var Y = Elvar(Y|N)] +var E[Y|N] = E[Nvar X]+var[N EX]

= EN.war X +var N.(EX)? = ME(X?) — (EX))] + M\(EX)? = AE[X?].



Q6. (i). Write f(B,t) := (B* —t)®. By Ito’s formula,
1
df = fgdB + fidt + §[fBB(dB)2 + 2 fpdBdt + fy(dt)?].

In the [...] on RHS, (dB)? = dt, dBdt = 0, (dt)* = 0. Also
fB=22B(B*—t), f,=—-2(B>-t), fpp=4(B*—t)+4B.2B =12B*—4t.
So
df = AB(B* — t)dB — 2(B* — t)dt + (6 B> — 2t)dt = 4B(B* — t)dB + 4B*dt.
As M = f — 4 [J B2ds, the stochastic differential of M is

dM = df — 4B?dt = 4B(B* — t)dB.

(ii) So integrating, M is the Ito integral
t
M, = 4/ B,(B? — 5)dBs..
0

The Ito6 integral on the RHS is a continuous local martingale starting from
0. Now B; =4 t'/2.Z where Z is N(0,1). As Z has all moments finite, each
E[B}] is a polynomial in t. So the integrand h = h(B;,t) on RHS satisfies
the integrability condition [ E[h%]ds < oo for all t. So the RHS is a (true)
continuous mg starting from 0.

(iii). With [M] = ([M,]) the quadratic variation of M,

So
d[M]; = 16B}(B? — t)*(dB;)* = 16 B (B} — t)*dt :

t
[M], = 16/ B(B? — s)ds.
0
N. H. Bingham



