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STOCHASTIC PROCESSES: EXAMINATION SOLUTIONS,
12.12.2010

Q1. Theorem (Lebesgue’s monotone convergence theorem, 1902).
If fn are non-negative measurable functions, fn ↑ f , then∫

fndµ ↑
∫
fdµ

(with both sides finite if f ∈ L(µ) and the RHS infinite otherwise).

Proof. For each n, choose fnk simple increasing to fn as k → ∞. Then
put gk := maxn≤k fnk. Then the gk are increasing (with k), simple and
non-negative, so

gk ↑ g (k → ∞)

with g non-negative and measurable (as each gk is). But for n ≤ k

fnk ≤ gk ≤ fk ≤ f.

So letting k → ∞,
fn ≤ g ≤ f.

Letting n→ ∞, f = g. As the integral is order-preserving, by above∫
fnkdµ ≤

∫
gkdµ ≤

∫
fkdµ (n ≤ k).

Let k → ∞: by definition of the integral (via simple approximations),∫
fndµ ≤

∫
gdµ =

∫
fdµ ≤ lim

k→∞

∫
fkdµ

(as g = f). Let n→ ∞:

lim
n→∞

∫
fndµ ≤

∫
fdµ ≤ lim

k→∞

∫
fkdµ.

As the two extremes are equal, these are equalities, proving the result. //
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For s > 1,

∫ ∞

0

xs−1

ex − 1
dx =

∫ ∞

0
xs−1.e−x.(1−e−x)−1dx =

∫ ∞

0
xs−1.e−x.

∞∑
0

e−nxdx =
∫ ∞

0
xs−1.

∞∑
1

e−nxdx.

Replacing the infinite sum on RHS by limn→∞
∑n

1 ... = limn fn, say, the fn
are increasing since each summand is positive. So by monotone convergence
we may interchange limit and integral on the RHS, to get

∑∞
1

∫∞
0 xs−1e−nxdx.

Replacing nx by x, this is

∞∑
1

∫ ∞

0
xs−1e−xdx/ns =

∫ ∞

0
xs−1e−xdx.

∞∑
1

1/ns = Γ(s).ζ(s). //
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Q2. Take the Lebesgue probability space ([0, 1],L, µ) modelling the uniform
distribution U [0, 1] on the unit interval (probability = length). For a ran-
dom variable X ∼ U [0, 1], take its dyadic expansion X =

∑∞
1 ϵn/2

n. Thus
ϵ1 = 0 iff X ∈ [0, 1/2), 1 iff X ∈ [1/2, 1) (or [1/2, 1]: we can omit 1, as
it carries 0 probability). If ϵ1, . . . , ϵn−1 are already defined, on the dyadic
intervals [k/2n−1, (k + 1)/2n−1), split each interval into two halves: ϵn = 0
on the left half, 1 on the right half. This construction shows that ϵ1, . . . , ϵn
are independent, coin-tossing random variables (Bernoulli with parameter
1/2: take values 0, 1 with probability 1/2 each), for each n. So the ϵn are
independent coin-tosses. Conversely, given ϵn independent coin tosses, form
X :=

∑∞
1 ϵn/2

n. Then Xn :=
∑n

1 ϵk/2
k → X a.s. The distribution function

of Xn has jumps 1/2n at k/2n, k = 0, 1, . . . , 2n − 1. This ‘saw-tooth jump
function’ converges to x on [0, 1], the distribution function of U [0, 1]. So
X ∼ U [0, 1]. So if X =

∑∞
1 ϵn/2

n, X ∼ U [0, 1] iff ϵn are independent coin
tosses – the Lebesgue probability space models both (a) length on the unit
interval and (b) infinitely many independent coin tosses.

(i) From the given U [0, 1], we get by dyadic expansion as above a sequence
of independent coin-tosses ϵn. Rearrange these into a two-suffix array ϵjk (as
with Cantor’s proof of 1873 that the rationals are countable). The ϵjk are all
independent, so the Xj :=

∑
ϵjk/2

k are independent, and U [0, 1] by above.
So from one U(0, 1), we get in this way infinitely many copies.
(ii) If F is a distribution function (right-continuous; increasing from 0 at
−∞ to 1 at ∞), define its (left-continuous) inverse function by F−1(t) :=
inf{F (x) ≥ t} for 0 < t < 1. Then if U ∼ U [0, 1], X := F−1(U) ∼ F . For,
{X ≤ x} = {F−1(U) ≤ x} = {U ≤ F (x)}, which has probability F (x) as
U is uniform. By this probability integral transformation we can pass from
generating copies from the uniform distribution (say by Monte Carlo simu-
lation) to generating copies from the distribution F , in particular, standard
normals. Hence by (i) above we can then generate infinitely many indepen-
dent standard normals.
(iii) We can hence simulate a Brownian motionB = (Bt) fromBt =

∑∞
0 λnZn∆n(t),

with Zn independent standard normals, ∆n(t) the Schauder functions and λn
suitable normalising constants.
(iv) Similarly, using (ii) rather than (i), we may simulate infinitely many
independent Brownian motions.
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Q3. A distribution is infinitely divisible (id) iff, for each n = 1, 2, . . ., it is
the n-fold convolution of a probability distribution – equivalently, if its CF
is the nth power of the CF of a probability distribution.

The Lévy-Khintchine formula states that a probability distribution is id
iff its CF has the form exp{−Ψ(u)}, where

Ψ(u) = iau+
1

2
σ2u2 +

∫
(eiux − 1− I(|x| < 1)µ(dx),

(a is real, σ ≥ 0 and the Lévy measure µ satisfies
∫
min(1, |x|2)µ(dx) <∞).

(i) ϕ(t) =
∫∞
−∞ eitx/(π(1 + x2))dx. Take γ the semicircle in the upper half-

plane on base [−R,R], t > 0, and consider f(z) := eitz/(π(1+z2)). The only
singularity inside γ is at y = i, a simple pole.

Resi
eitz

π(z − 1)(z + 1)
=

e−t

π.2i
=

−ie−t

2π
.

By Cauchy’s Residue Theorem:∫
γ
f = 2πi.

(
−ie−t

2π

)
= e−t.

But ∫
γ
f =

∫
γ1
f +

∫
γ2
f →

∫ ∞

−∞

eiλt

π(1 + x2)
+ 0 (Jordan’s Lemma).

This gives the result for t > 0. For t = 0, it is an arctan (or tan−1) integral.
For t < 0: replace t by −t. //

Thus the CF of the symmetric Cauchy density 1/(π(1 + x2)) is e−|t|.
(ii) This is id, as e−|t| = [e−|t|/n]n for each n, and each [.] is a CF.
(iii) Substituting µ(dx) = 1/(π|x|2)dx above gives Ψ(u) as the sum of two
integrals, I1 over (−1, 1) and I2 over its complement. In I1, the ±iux terms
over (−1, 0) and (0, 1) cancel; we can then combine I1 and I2 to get

Ψ(u) =
2

π

∫ ∞

0
(cos ux− 1)dx/x2.

This gives Ψ′(u) = −(2/π)
∫∞
0 sinux dx/x = −(2/π)

∫∞
0 sin t dt/t = −(2/π).π/2 =

−1. So Ψ(u) = −u for u > 0. So Ψ(u) = −|u|. //

For Xi independent Cauchy, (X1 + . . . +Xn)/n has CF [e−|t|/n]n = e−|t|,
the CF of X1. So (X1 + . . . + Xn)/n =d X1. This does not contradict the
SLLN: it does not apply, as the mean of Xi is undefined.
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Q4. (i) For t ̸= 0, X is Gaussian with zero mean (as B is), and continuous
(again, as B is). The covariance of B is min(s, t). The covariance of X is

cov(Xs, Xt) = cov(sB(1/s), tB(1/t))

= E[sB(1/s).tB(1/t)]

= st.E[B(1/s)B(1/t)]

= st.cov(B(1/s), B(1/t))

= st.min(1/s, 1/t) = min(t, s) = min(s, t).

This is the same covariance as Brownian motion. So, away from the origin,
X is Brownian motion, as a Gaussian process is uniquely characterized by
its mean and covariance (from the properties of the multivariate normal
distribution). So X is continuous. So we can define it at the origin by
continuity. So X is Brownian motion everywhere – X is BM.
(ii) Since Brownian motion is 0 at the origin, X(0) = 0. Since Brownian
motion is continuous at the origin, X(t) → 0 as t→ 0. This says that

tB(1/t) → 0 (t→ 0),

which is
B(t)/t→ 0 (t→ ∞),

as required.
By construction, Brownian motion is given by its expansion

Bt =
∞∑
n=0

λnZn∆n(t),

where the Zn are independent standard normal random variables, the ∆n(t)
are the Schauder functions and the λn are normalising constants. Now
∆n(0) = 0 for n ≥ 1, while ∆0(t) = t, so ∆0(1) = 1. Also λ0 = 1. Putting
t = 1, B1 = Z0. So Brownian bridge is

B0(t) := B(t)− tB(1) = B(t)− tZ0 :

the expansion of Brownian bridge in the Schauder functions is

B0(t) =
∞∑
n=1

λnZn∆n(t).
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Q5. (i)

ψ(t) = E[eitY ] = E[exp{it(X1 + . . .+XN)}]
=

∑
n

E[exp{it(X1 + . . .+XN)}|N = n].P (N = n)

=
∑
n

e−λλn/n!.E[exp{it(X1 + . . .+Xn)}]

=
∑
n

e−λλn/n!.(E[exp{itX1}])n

=
∑
n

e−λλn/n!.ϕ(t)n

= exp{−λ(1− ϕ(t))}.

Differentiate:
ψ′(t) = ψ(t).λϕ′(t),

ψ′′(t) = ψ′(t).λϕ′(t) + ψ(t).λϕ′′(t).

As ϕ(t) = E[eitX ], ϕ′(t) = E[iXeitX ], ϕ′′(t) = E[−X2eitX ]. So (ϕ(0) = 1
and) ϕ′(0) = iµ, ϕ′′(0) = −E[X2],

ψ′(0) = λϕ′(0) = λ.iµ,

and as also ψ′(0) = iEY , this gives EY = λµ. Similarly,

ψ′′(0) = iλµ.iλµ+ λϕ′′(0) = −λ2µ2 − λE[X2],

and also (ψ(0) = 1, ψ′(0) = iλµ and) ψ′′(0) = −E[Y 2]. So

var Y = E[Y 2]− [EY ]2 = λ2µ2 + λE[X2]− λ2µ2 = λE[X2].

(ii) Given N , Y = X1 + . . . + XN has mean NEX = Nµ and variance
N var X = Nσ2. As N is Poisson with parameter λ, N has mean λ and
variance λ. So by the Conditional Mean Formula,

EY = E[E(Y |N)] = E[Nµ] = λµ.

By the Conditional Variance Formula,

var Y = E[var(Y |N)] + var E[Y |N ] = E[Nvar X] + var[N EX]

= EN.var X + var N.(EX)2 = λ[E(X2)− (EX)2] + λ.(EX)2 = λE[X2].
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Q6. (i). Write f(B, t) := (B2 − t)2. By Itô’s formula,

df = fBdB + ftdt+
1

2
[fBB(dB)2 + 2fBtdBdt+ ftt(dt)

2].

In the [...] on RHS, (dB)2 = dt, dBdt = 0, (dt)2 = 0. Also

fB = 2.2B(B2−t), ft = −2(B2−t), fBB = 4(B2−t)+4B.2B = 12B2−4t.

So

df = 4B(B2 − t)dB − 2(B2 − t)dt+ (6B2 − 2t)dt = 4B(B2 − t)dB + 4B2dt.

As M = f − 4
∫ t
0 B

2
sds, the stochastic differential of M is

dM = df − 4B2
t dt = 4B(B2 − t)dB.

(ii) So integrating, M is the Itô integral

Mt = 4
∫ t

0
Bs(B

2
s − s)dBs.

The Itô integral on the RHS is a continuous local martingale starting from
0. Now Bt =d t

1/2.Z where Z is N(0, 1). As Z has all moments finite, each
E[Bn

t ] is a polynomial in t. So the integrand h = h(Bt, t) on RHS satisfies
the integrability condition

∫ t
0 E[h

2
s]ds < ∞ for all t. So the RHS is a (true)

continuous mg starting from 0.
(iii). With [M ] = ([Mt]) the quadratic variation of M ,

d[M ]t = (dM)2t ; dMt = 4Bt(B
2
t − t)dBt.

So
d[M ]t = 16B2

t (B
2
t − t)2(dBt)

2 = 16B2
t (B

2
t − t)2dt :

[M ]t = 16
∫ t

0
B2

s (B
2
s − s)2ds.

N. H. Bingham
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