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STOCHASTIC PROCESSES: HANDOUT, December 2010

The following material is not examinable. Think of it as (roughly) what
I would have included had I had 11 weeks rather than 10. I include it here
as
(a) I have it to hand;
(b) you may find it useful as back-up to the course as taught, and/or back-
ground to other courses, or the MSc programme as a whole.

1. Likelihood Estimation for Diffusions [Lecture 20] (reference: Bingham &
Kiesel, 5.9).

We consider diffusions

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dWt (∗)

with Wt a standard Brownian motion, and θ ∈ Θ with Θ a compact parame-
ter space. We require the diffusions to be time-homogeneous and stationary
and work under the following additional assumptions.
Assumption 1.
For all θ ∈ Θ there exists a strong solution of (∗). This may be guaranteed
by imposing Lipschitz and linear growth bounds:

|µ(x; θ)− µ(y; θ)| ≤ K|x− y|,
|σ(x; θ)− σ(y; θ)| ≤ K|x− y|,

|µ(x; θ)|2 ≤ K2(1 + |x|2),
|σ(x; θ)|2 ≤ K2(1 + |x|2),

where K is some fixed constant independent of θ.
Assumption 2.
Θ is compact and the true parameter value θ0 is an element of Θ, i.e. θ ∈ Θ.

Given observations X0, Xt1 , . . . , Xtn (which we may assume to be equidis-
tant, i.e. to be observations at n+1 equidistant time points t0 = 0, t1, . . . , tn,
with ∆n

t = tk − tk−1) the likelihood function of the discrete-time data is

ln(θ) = p(X0, Xt1 , . . . , Xtn ; θ)

= p(X0, t0; θ)
n−1∏
k=0

p(Xtk , tk;Xtk+1
, tk+1; θ)

= p(X0, t0; θ)
n−1∏
k=0

p(Xtk ,∆
n
t ;Xtk+1

; θ),
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where p(.; θ) denotes the joint density; the first equality follows from the
Markovian nature, and the second equality from the assumption that we
have a time-homogeneous process.

We shall be concerned with the log - likelihood function ℓn(θ),

ℓn(θ) = log ln(θ) = log p(X0, t0; θ) +
n−1∑
k=0

log p(Xtk ,∆
n
t ;Xtk+1; θ).

Assumption 3.
The likelihood function ℓn is twice continuously differentiable in θ in the
interior of Θ. Furthermore the class of random matrices so obtained{[

∂2ℓn(θ)

∂θ2

]
, θ ∈ Θo

}
is uniformly bounded.

So the observed information Jn(θ) = −
[
∂2ℓn(θ)
∂θ2

]
exists.

Assumption 4.
The expected information matrix

In(θ) = Eθ

([
∂ℓn(θ)

∂θ

] [
∂ℓn(θ)

∂θ

]′)
has full rank and is uniformly bounded for θ ∈ Θ.
Assumption 5.
For every vector λ ∈ Rd we have that the quadratic form λ′In(θ)λ → ∞.
These assumption are needed to assure that the maximum likelihood estima-
tor θ̂ can be obtained from the (true) likelihood function and is consistent
and asymptotically normal. We quote:

Theorem. Under assumptions 1–5 the maximum likelihood estimator θ̂n
exists and is consistent and asymptotically normal (CAN), i.e. with θ0 the
true parameter

θ̂n → θ0 (n → ∞) in probability,

and

In(θ0)
1
2 (θ̂n − θ0) → N (n → ∞) in distribution, N ∼ N(0, 1).

Indirect Inference. A naive approach to the above estimation problem is to
use a discrete Euler approximation:

x
(∆)
t = x

(∆)
k∆ for k∆ ≤ t ≤ (k + 1)∆,
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where
x
(∆)
(k+1)∆ = x

(∆)
k∆ +∆µ(x

(∆)
k∆ ; θ) + σ(x

(∆)
k∆ ; θ)

√
∆ϵ

(∆)
k

with ϵ
(∆)
k Gaussian white noise. We quote that the process x

(∆)
t converges

weakly to X(t) for ∆ → 0 at a sufficient rate. Thus a naive approach to
estimate θ would be to use an approximation of Euler type (usually ∆ = 1
is chosen) and compute the maximum likelihood estimator. However, it is
known that such an estimator is inconsistent.

2. Brownian Motion in Stochastic Modeling [L23] (ref.: B&K, 5.3.4).
To begin at the beginning: Brownian motion is named after Robert Brown

(1773–1858), the Scottish botanist who in 1828 observed the irregular and
haphazard – apparently random – motion of pollen particles suspended in
water. Similar phenomena are observed in gases – witness the familiar sight
of dust particles dancing in sunbeams. During the 19th C., it became sus-
pected that the explanation was that the particles were being bombarded
by the molecules in the surrounding medium – water or air. Note that this
picture requires three different scales: microscopic (water or air molecules),
mesoscopic (pollen or dust particles) and macroscopic (you, the observer).
These ideas entered the kinetic theory of gases, and statistical mechanics,
through the pioneering work of Maxwell, Gibbs and Boltzmann. However,
some scientists still doubted the existence of atoms and molecules (not then
observable directly). Enter the birth of the quantum age in 1900 with the
quantum hypothesis of Max Planck (1858–1947).

Louis Bachelier (1870–1946) introduced Brownian motion into the field
of economics and finance in his thesis Théorie de la spéculation of 1900.
His work lay dormant until much later; we will pick up its influence on Itô,
Samuelson, Merton and others below.

Albert Einstein (1879–1955), in his work of 1905, attacked the problem of
demonstrating the existence of molecules, and for good measure estimating
Avogadro’s number (c. 6.02 × 1023) experimentally. Einstein realized that
what was informative was the mean square displacement of the Brownian
particle – its diffusion coefficient, in our terms. This is proportional to time,
and the constant D of proportionality,

var Wt = Dt,

is informative about Avogadro’s number (which, roughly, gives the scale-
factor in going from the microscopic to the macroscopic scale). This Ein-
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stein relation is the prototype of a class of results now known in statistical
mechanics as fluctuation-dissipation theorems.

All this was done without any proper mathematical underpinning. This
was provided by Wiener in 1923, as mentioned earlier.

Quantum mechanics emerged in 1925–28 with the work of Heisenberg,
Schrodinger and Dirac, and with the ‘Copenhagen interpretation’ of Bohr,
Born and others, it became clear that the quantum picture is both inescapable
at the subatomic level and intrinsically probabilistic. The work of Richard P.
Feynman (1918–1988) in the late 1940s on quantum electrodynamics (QED),
and his approach to quantum mechanics via ‘path integrals’, introduced
Wiener measure squarely into quantum theory. Feynman’s work on quan-
tum mechanics was made mathematically rigorous by Mark Kac (1914–1984)
(QED is still problematic!); the Feynman-Kac formula (giving a stochastic
representation for the solutions of certain PDEs) stems from this.

Subsequent developments involve Itô calculus, and we shall consider them
in Ch. IV below. Suffice it to say here that Itô’s work of 1944 picked up
where Bachelier left off, and created the machinery needed to use Brownian
motion to model stock prices successfully (note: stock prices are nonnegative
– positive, until the firm goes bankrupt – while Brownian motion changes
sign, indeed has lots of sign changes, as we saw above when discussing its
zero-set Z). The economist Paul SAMUELSON (1915-2009) in 1965 advo-
cated the Itô model – geometric Brownian motion – for financial modelling.
Then in 1973 Black and Scholes gave their famous formula, and the same
year Merton derived it by Itô calculus. Today Itô calculus is a fundamental
tool in stochastic modeling generally, and the modelling of financial markets
in particular.

In sum: wherever we look – statistical mechanics, quantum theory, eco-
nomics, finance – we see a random world, in which much that we observe is
driven by random noise, or random fluctuations. Brownian motion gives us
an invaluable model for describing these, in a wide variety of settings. This
is statistically natural. The ubiquitous nature of Brownian motion is the dy-
namic counterpart of the ubiquitous nature of the normal distribution. This
rests ultimately on the Central Limit Theorem (CLT – II.9, L12) – known to
physicists as the Law of Errors – and is, fundamentally, why statistics works.

Economic Interpretation. Suppose X is used as a driving noise process in
a financial market model for asset prices (example: X = BM in the Black-
Scholes-Merton model). If prices move continuously, the Brownian model is
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appropriate: among Lévy processes, only Brownian motions have continuous
paths (µ = 0, so there are no jumps). If prices move by intermittent jumps,
a compound Poisson (FA) model is appropriate – but this is more suitable
for modelling economic shocks, or the effects of big transactions. For the
more common case of the everyday movement of traded stocks under the
competitive effects of supply and demand, numerous small trades predom-
inate, economic agents are price takers and not price makers, and a model
with infinite activity (IA) is appropriate.

There is a parallel between the financial situation above – the IA case
(lots of small traders) as a limiting case of the FA case (a few large ones) and
the applied probability areas of queues and dams. Think of work arriving
from the point of view of you, the server. It arrives in large discrete chunks,
one with each arriving customer. As long as there is work to be done, you
work non-stop to clear it; when no one is there, you are idle. The limiting
situation is that of a dam. Raindrops may be discrete, but one can ignore
this from the water-engineering viewpoint. When water is present in the
dam, it flows out through the outlet pipe at constant rate (unit rate, say);
when the dam is empty, nothing is there to flow out.

3. Wavelets [L23] (ref.: B&K, p.166, 5.3.1).
The Haar system (Hn), and the Schauder system (∆n) obtained by inte-

gration from it, are examples of wavelet systems. The original function, H or
∆, is a mother wavelet, and the ‘daughter wavelets’ are obtained from it by
dilation and translation. The expansion of the theorem is the wavelet expan-
sion of BM with respect to the Schauder system (∆n). For any f ∈ C[0, 1],
we can form its wavelet expansion

f(t) =
∞∑
n=0

cn∆n(t),

with wavelet coefficients cn. Here cn are given by

cn = f

(
k + 1

2

2j

)
− 1

2

[
f

(
k

2j

)
+ f

(
k + 1

2j

)]
.

This is the form that gives the ∆n(.) term its correct triangular influence, lo-
calized on the dyadic interval [k/2j, (k+1)/2j]. Thus for f BM , cn = λnZn,
with λn, Zn as above. The wavelet construction of BM above is, in modern
language, the classical ‘broken-line’ construction of BM due to Lévy in his
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book of 1948 - the Lévy representation of BM using the Schauder system,
and extended to general cons by Cieselski in 1961. The earliest expansion of
BM – ‘Fourier-Wiener expansion’ – used the trigonometric cons (Paley and
Zygmund 1930–32, Paley, Wiener and Zygmund 1932).

Note. We shall see that Brownian motion is a fractal, and wavelets are a
useful tool for the analysis of fractals more generally.

From the mathematical point of view, Brownian motion owes much of its
importance to belonging to all the important classes of stochastic processes:
it is (strong) Markov, a (continuous) martingale, Gaussian, a diffusion, a
Lévy process etc. From an applied point of view, as its diverse origins –
Brown’s work in botany, Bachelier’s in economics, Einstein’s in statistical
mechanics etc. – suggest, Brownian motion has a universal character, and is
ubiquitous both in theory and in applied modeling. The universal nature of
Brownian motion as a stochastic process is simply the dynamic counterpart
– where we work with evolution in time – of the universal nature of its static
counterpart, the normal (or Gaussian) distribution – in probability, statis-
tics, science, economics etc. Both arise from the same source, the central
limit theorem. This says that when we average large numbers of indepen-
dent and comparable objects, we obtain the normal distribution in a static
context, or Brownian motion in a dynamic context. What the central limit
theorem really says is that, when what we observe is the result of a very
large number of individually very small influences, the normal distribution
or Brownian motion will inevitably and automatically emerge. This explains
the central role of the normal distribution in statistics – basically, this is why
statistics works. It also explains the central role of Brownian motion as the
basic model of random fluctuations, or random noise as one often says. As
the word noise suggests, this usage comes from electrical engineering and the
early days of radio. When we come to studying the dynamics of stochas-
tic processes by means of stochastic differential equations (Ch. IV), we will
usually find a ‘driving noise’ term. The most basic driving noise process is
Brownian motion; its role is to represent the ‘random buffeting’ of the object
under study by a myriad of influences which we have no hope of studying in
detail – and indeed, no need to. By using the central limit theorem, we make
the very complexity of the situation work on our side: Brownian motion is
a comparatively simple and tractable process to work with – vastly simpler
than the underlying random buffeting whose effect it approximates and rep-
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resents.
The precise circumstances in which one obtains the normal or Gaussian

distribution, or Brownian motion, have been much studied (this was the pre-
dominant theme in Lévy’s life’s work, for instance). One needs means and
variances to exist (which is why the mean µ and the variance σ2 are needed to
parametrize the normal or Gaussian family). One also needs either indepen-
dence, or something not too far removed from it, such as suitable martingale
dependence or Markov dependence.

4. Zero set of BM [L23] (ref.: B&K p.172-3, 5.3.3).

We write Z for the zero set of BM: Z is the random time-set where BM
vanishes, Z := {t : Bt = 0}.

Using time-inversion, we see that – as the zero-set of Brownian motion
Z := {t ≥ 0 : Wt = 0} is unbounded (contains infinitely many points increas-
ing to infinity), it must also contain infinitely many points decreasing to zero.
That is, any zero of Brownian motion (e.g., time t = 0, as we are choosing
to start our BM at the origin) produces an ‘echo’ – an infinite sequence of
zeros at positive times decreasing to zero. How can we hope to graph such
a function? (We can’t!) How on earth does it manage to escape from zero,
when hitting zero at one time, u say, forces zero to be hit infinitely many
times in any time-interval [u, u+ϵ] (ϵ > 0)? The answer to these questions in-
volves excursion theory, one of Itô’s great contributions to probability theory
(1970). When BM is at zero, it is as likely to leave to the right as to the left,
by symmetry – but it will leave, immediately, with probability one. These
‘excursions away from zero’ – above and below – happen according to a Pois-
son random measure governing the excursions – the excursion measure – on
path-space. As there are infinitely many excursions in finite time-intervals,
the excursion measure has infinite mass – it is σ-finite but not finite. We will
not pursue excursion theory here. Note however that, far from being patho-
logical as one might at first imagine, the behaviour described above is what
one expects of a normal, well-behaved process: the technical term is ‘{0} is
regular for 0’, and ‘regular’ is used to describe good, not bad, behaviour.

Since Brownian motion has continuous paths, its zero-set Z is closed.
Since each zero is, by above, a limit-point of zeros, Z is a perfect set. The
zero-set is also uncountable (‘big’, in one sense), but Lebesgue-null – has
Lebesgue measure zero (‘small’, in another sense). The machinery for mea-
suring the size of small sets such as Z is that of Hausdorff measures. The
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Hausdorff measure properties of Z have been studied in great detail. The
zero-set Z has a fractal structure, which it inherits from that of W under
Brownian scaling. The natural machinery for studying the fine detail of the
structure of fractals is, as above, that of Hausdorff measures.

Note. What Constitutes Pathological Behaviour? Weierstrass, and several
other analysts of the 19th C., constructed examples of functions which were
continuous but nowhere differentiable. These were long regarded as interest-
ing but pathological. Similarly for the paths of Brownian motion. This used
to be regarded as very interesting mathematically, but of limited relevance
to modelling the real world. Then – following the work of B. B. Mandelbrot
(plus computer graphics, etc.) – fractals attracted huge attention. It was
then realized that such properties were typical of fractals, and so – as we
now see fractals everywhere (to quote the title of Barnsley’s book) – ubiqui-
tous rather than pathological.

The situation with Lévy paths of infinite activity is somewhat analogous.
Because one cannot draw them (or even visualise them, perhaps), they used
to be regarded as mathematically interesting but clearly idealised so far as
modelling of the real world goes. The above economic/financial interpreta-
tion has changed all this. ‘Lévy finance’ is very much alive at the moment.
Moral: one never quite knows when this sort of thing is going to happen in
mathematics!

5. Stability [L24] (ref.: b&K p.180-181, 5.5.1).
Suppose we now restrict to identical distribution as well as independence

in SD above. That is, we seek the class of limit laws of random walks
Sn =

∑n
1 Xk with (Xn) iid – after an affine transformation (centering and

scaling) – that is, for all limit laws of (Sn−an)/bn. It turns out that the class
of limit laws so obtained is the same as the class of laws for which Sn has the
same type as X1 – i.e. the same law to within an affine transformation, or a
change of location and scale. Thus the type is ‘stable’ (invariant, unchanged)
under addition of independent copies, whence such laws are called stable.
They form the class S:

S ⊂ SD ⊂ I.

It turns out that this class of stable laws can be described explicitly by
parameters – four in all, of which two (location and scale, specifying the law
within the type) are of minor importance, leaving two essential parameters,
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called the index α (α ∈ (0, 2]) and the skewness parameter β (β ∈ [−1, 1]).
To within type, the Lévy exponent is

Ψ(u) = |u|α(1− iβsgn(u) tan
1

2
πα)

for α ̸= 1 (0 < α < 1 or 1 < α ≤ 2) and

Ψ(u) = |u|(1 + iβsgn(u) log |u|)

if α = 1. The Lévy measure is absolutely continuous, with density of the
form

µ(dx) =

{
c+dx/x

1+α x > 0,
c−dx/|x|1+α x < 0,

with c+, c− ≥ 0 and
β = (c+ − c−)/(c+ + c−).

The case α = 2 (for which β drops out) gives the normal/Gaussian case,
already familiar. The case α = 1 and β = 0 gives the (symmetric) Cauchy
law above. The case α = 1, β ̸= 0 gives the asymmetric Cauchy case, which
is awkward, and we shall not pursue it.

From the form of the Lévy exponents of the remaining stable CFs (where
the argument u appears only in |u|α and sgn(u)), we see that, if Sn = X1 +
. . .+Xn with Xi independent copies,

Sn/n
1/α = X1 in distribution (n = 1, 2, . . .).

This is called the scaling property of the stable laws; those (all except the
asymmetric Cauchy) that possess it are called strictly stable.

The stable densities do not have explicit closed forms in general, only
series expansions. The normal and (symmetric) Cauchy densities are known
(above), as is one further important special case:
Lévy’s density. Here α = 1/2, β = +1. One can check that for each a,

f(x) =
a√
2πx3

exp
{
−1

2
a2/x

}
=

a

x3/2
ϕ(a/

√
x) (x > 0)

has Laplace transform exp{−a
√
2s} (s ≥ 0). This is the density of the first-

passage time of Brownian motion over a level a > 0.
Holtsmark density. The other remarkable case is that of α = 3/2, β = 0,
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studied by the Danish astronomer J. Holtsmark in 1919 in connection with
the gravitational field of stars – this before Lévy’s work on stability. The
power 3/2 comes from 3 dimensions and the inverse square law of gravity.

6. Martingale Transforms [Problems 8, after Lecture 24] (ref.: B&K 3.4).
Now think of a gambling game, or series of speculative investments, in

discrete time. There is no play at time 0; there are plays at times n = 1, 2, . . .,
and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Thus if Xn is a mar-
tingale, the game is ‘fair on average’.

Call a process C = (Cn)
∞
n=1 predictable if Cn is F\−∞-measurable for all

n ≥ 1. Think of Cn as your stake on play n (C0 is not defined, as there is
no play at time 0). Predictability says that you have to decide how much to
stake on play n based on the history before time n (i.e., up to and including
play n− 1). Your winnings on game n are Cn∆Xn = Cn(Xn −Xn−1). Your
total (net) winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

k=1 is empty), and call C •X the martingale transform
of X by C.

Theorem (Martingale Transform Theorem).
(i) If C is a bounded non-negative predictable process and X is a super-
martingale, C •X is a supermartingale null at zero.
(ii) If C is bounded and predictable and X is a martingale, C •X is a mar-
tingale null at zero.

Proof. Y = C • X is integrable, since C is bounded and X integrable.
Now

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]
= CnE[(Xn −Xn−1)|Fn−1]
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(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale. //

Interpretation. You can’t beat the system! In the martingale case, pre-
dictability of C means we can’t foresee the future (which is realistic and
fair). So we expect to gain nothing – as we should.
Note. Martingale transforms are the discrete analogues of stochastic inte-
grals. They dominate the mathematical theory of finance in discrete time,
just as stochastic integrals (Ch. IV) dominate the theory in continuous time.

The old-fashioned term for ordinary calculus is infinitesimal calculus.
Martingale transforms belong to the probabilistic elaboration of the discrete
analogue of this, the calculus of finite differences. The passage from discrete
to continuous is written formally as

∆Yn = Cn∆Xn → dYt = CtdXt,

where the dY, dX on the right are stochastic differentials.

7. SDE for Geometric Brownian Motion (GBM) [28] (ref.: B&K 5.6.3).
Suppose we wish to model the time evolution of a stock price S(t) (as

we will, in Black-Scholes theory). Consider how S will change in some small
time-interval from the present time t to a time t + dt in the near future.
Writing dS(t) for the change S(t + dt) − S(t) in S, the return on S in this
interval is dS(t)/S(t). It is economically reasonable to expect this return to
decompose into two components, a systematic part and a random part. The
systematic part could plausibly be modelled by µdt, where µ is some param-
eter representing the mean rate of return of the stock. The random part
could plausibly be modelled by σdW (t), where dW (t) represents the noise
term driving the stock price dynamics, and σ is a second parameter describ-
ing how much effect this noise has – how much the stock price fluctuates.
Thus σ governs how volatile the price is, and is called the volatility of the
stock. The role of the driving noise term is to represent the random buffeting
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effect of the multiplicity of factors at work in the economic environment in
which the stock price is determined by supply and demand.

The most successful single branch of mathematical or scientific knowledge
we have is the calculus, dating from Newton and Leibniz in the 17th cen-
tury, and the resulting theories of differential equations, ordinary and partial
(ODEs and PDEs). With any differential equation, the two most basic ques-
tions are those of existence and uniqueness of solutions – and to formulate
such questions precisely, one has to specify what one means by a solution. For
example, for PDEs, 19th century work required solutions in terms of ordinary
functions – the only concept available at that time. More modern work has
available the concept of generalised functions or distributions (in the sense
of Laurent Schwartz (1915–2002)). It has been found that a much cleaner
and more coherent theory of PDEs can be obtained if one is willing to admit
such generalised functions as solutions. Furthermore, to obtain existence and
uniqueness results, one has to impose reasonable regularity conditions on the
coefficients occurring in the differential equation.

Numerics. Most differential equations (ordinary or partial) do not have so-
lutions in closed form, and so have to be solved numerically in practice. This
is all the more true in the more complicated setting of stochastic differential
equations, where it is the exception rather than the rule for there to be an
explicit solution. One is thus reliant in practice on numerical methods of
solution, and here a great deal is known. We must refer elsewhere for details.

Note. Stochastic calculus with ‘anticipating’ integrands, ‘backward’ stochas-
tic integrals, etc., have been developed, and are useful (e.g., in more advanced
areas such as the Malliavin calculus. But let us learn to walk before we learn
to run.

NHB, 15.12.2010.
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