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I. MEASURE THEORY AND INTEGRATION

1. Length, Area and Volume.
On the real line, for a ≤ b, the length of the interval [a, b] is (defined

to be) b − a, and similarly for (a, b), [a, b), (a, b]. In the plane, the area of
a rectangle is (defined to be) the product of the (lengths of the) base and
height. In three dimensions, the volume of a cuboid (3-dimensional analogue
of a rectangle) is (defined to be) the product of the (lengths of the) three
perpendicular sides (length x breadth x height). Similarly for d dimensions.

The length (or area, or volume) of a set which is the disjoint union of two
sets above is (defined to be) the sum of the lengths (or areas, or volumes).
Similarly for the disjoint union of a finite number n of such sets. This is the
property of finite additivity. This is all very obvious, classical, and pre-1900.

What about sets that are infinite disjoint unions of sets above? It is quite
reasonable to define the length etc., in this case as the sum of the lengths
etc. – though now the series may diverge to +∞ (not a problem – even in
the above, we may have a = −∞ and/or b = +∞: lines, and half-lines,
have infinite length; planes and half-planes have infinite area, etc.) This is
countable additivity, or σ-additivity. This is not obvious, and it dates from
the 1902 thesis of Henri LEBESGUE (1875-1941):
H. Lebesgue: Intégrale, longueur, aire. Annali di Mat. 7 (1902), 231-259.

Before proceeding, we ask for which sets can we calculate the length/area/volume?
We recall some classical results on area and volume known to the ancient
Greeks.
Circle.

Defining π by the perimeter of a circle of radius r being 2πr (and taking
for granted that the ratio of perimeter to radius is the same for all circles!),
the area A of a circle is πr2.
First proof (Greeks). Divide the circle into a large even number 2n of equal
sectors (360, say). Stack the sectors in a pile, of base r, with the odd-
numbered vertices on the left and the evens on the right. The resulting
shape is approximately rectangular; by symmetry, half the perimeter, i.e.
πr, is on the left. So by the area of a rectangle, the area is approximately
r × πr = πr2. The approximation (equivalent to sin θ ∼ θ for θ small) can
be made arbitrarily accurate by taking n large enough. So A = πr2. //
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Second proof (polar coordinates). The element of area in plane polar coordi-
nates is

dA = dr.rdθ = rdrdθ.

Integrating over r from 0 to r and θ from 0 to 2π gives A = 2π.r2/2 = πr2.
//
Ellipse.

The area of an ellipse with semi-axes a, b is A = πab.
Proof (cartesian coordinates). Were the ellipse a circle (a = b), we would
have the result by above. Suppose w.l.o.g. that a ≥ b. Use cartesians, in
which the element of area is

dA = dx.dy.

Squash the x-axis in the ratio b/a. This makes the ellipse a circle of radius
b, so area πb2. It also reduces the area of dA = dx.dy to dA = dxdy.b/a. To
get the area of the ellipse, we have to unsquash – i.e. to increase πb2 in the
ratio a/b, giving area A = πab. //

Observe that we have now used both of the plane coordinate systems in
common use. We have also exhausted the ‘nice’ examples, where we can
find areas by exploiting the geometry of the figure. For general figures, there
is only one method available: superimpose a suitably fine sheet of graph
paper over the figure, and count squares inside it (including a correction for
squares meeting the edge); then take finer and finer sheets of graph paper.
This procedure will work for figures with nice regular boundaries, but we
must expect it to fail for irregular boundaries, where the figure is ‘all edge
and no middle’.

These elementary thoughts strongly suggest that we cannot define area
for general sets in the plane, only for suitably nice ones. This is indeed true,
and similarly for length and volume in one and three dimensions (we used
two dimensions above so that we can draw pictures).

The upshot is that we need a mathematical theory for measuring length,
area and volume. This exists, and is called Measure Theory; it dates back to
Lebesgue.

It turns out that the mathematics needed to handle length, area and
volume actually works much more generally. We can also use it to handle
gravitational mass (in Celestial Mechanics, following Newton’s Inverse Square
Law of Gravity in his Principia of 1687). We can also use it to handle
electrostatic charge (which, unlike length, area, volume and mass, can be
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negative). Crucially, we can also use it to handle probability.
Perimeter and area of a circle.

If r increases to r + dr, the perimeter L increases to 2π(r + dr) and the
area A to π(r + dr)2. So dA = 2πrdr +π(dr)2 = 2πrdr = Ldr, to first order.
So dA/dr = L, A =

∫
Ldr. Thus either of the formulae for L and A follows

from the other. Geometrically, this says that the annular strip dA can be
straightened out to a rectangle of sides L = 2πr and dr without changing its
area (to first order).
Volume of a sphere.

We use spherical polar coordinates (what else?!) (r, θ, φ), where θ ∈ [0, π]
is the colatitude and φ ∈ [0, 2π] the longitude. The element of volume is

dV = r2 sin θdrdθdφ.

So

V =
∫ ∫ ∫

dV =
∫ r

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ = r3/3.2π.[− cos θ]π0

= 2πr3/3.(−)[(−1)− 1] = 4πr3/3.

Surface area of a sphere.
For fixed radius r, the element of area is dA = r2 sin θdθdφ, so

A =
∫ ∫

dA = r2
∫ π

0
sin θdθ

∫ 2π

0
dφ = r2.2.2π = 4πr2.

Again, note that dV/dr = A, V =
∫ r
0 dA: if r is increased by dr, the extra

volume dV is to first order Adr (think of melting of polar ice distributing
itself over the surface of the oceans to increase sea level).
Volume of a pyramid, cone etc..

For a pyramid with a general (not necessarily square) base, or a cone with
a (not necessarily circular) base, of base area B and height h, dividing up
the volume into similar horizontal slices and integrating vertically gives

V =
∫

dV =
∫ h

0
(y/h)2B.dy = B.h3/3.h−2 : V = Bh/3.

(Please continue this list with your own favourite examples.)
All this was known to the ancient Greeks, essentially by these methods.

The Greeks had integration, which they called the ‘method of exhaustion’
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(Eudoxus (of Cnidus, c.410 - c.355 BC); in Euclid’s Elements, Book X, c.
300BC; developed by Archimedes (c.287 - 212 BC)), but not explicitly dif-
ferentiation, still less a second derivative – which is why Newton’s Laws of
Motion, and Law of Gravity, had to wait two millennia to launch the Scien-
tific Revolution.

What had to wait even longer – till Lebesgue – was a systematic investi-
gation of which sets have a length/area/volume. By above, we must expect
that not all sets do! Indeed, a ‘typical’ set does not; those which do are rea-
sonably regular or nice (technically: measurable). We turn to all this next.
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