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Note on probability spaces.
The example of L10 showing that convergence in pr does not imply a.s.

convergence depends on the existence of non-trivial (Lebesgue-)null sets. In
a purely atomic measure space, there are no non-trivial null sets, examples
such as this cannot be constructed, and convergence in pr and a.s. become
the same. This is a rare case when we need to mention the probability space
explicitly; usually we do not need to. In practice, we shall always have a
probability space at least as rich as the Lebesgue probability space above,
and so will not meet such examples.

4. Modes of convergence.
Recall (L9) that when all random variables are finite-valued, a.s. conver-

gence is the same as almost uniform convergence.
Convergence in Lp is given by a norm, so also by a metric. By the Riesz-

Fischer theorem (L6), Lp is complete: if ‖fm − fn‖p → 0 as m,n →∞, then
there is some f ∈ Lp such that fn → f in Lp.

Convergence in probability is also given by a metric:

d(X,Y ) := E
( |X − Y |
1 + |X − Y |

)
.

This metric is also complete.
Given any sequence Xn converging in pr, there exists some subsequence

converging a.s. (this also is due to F. Riesz in 1912). We quote this. Likewise,
any sequence Xn converging in pth mean has an a.s. convergent subsequence.

Convergence in distribution.
We turn now to a weaker mode of convergence, which deals not with values

of the random variables as above but with their distributions. If Xn, X are
random variables with distribution functions Fn, F , we say that Xn → X in
distribution (or in law),

Xn → X in distribution, or Fn → F in distribution,

if

Ef(Xn) → Ef(X) (n →∞) for all bounded continous functions f ,
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equivalently, if
∫

f(x)dFn(x) →
∫

f(x)dF (x) (n →∞)

for all such f . This mode of convergence is is also generated by a metric, the
Lévy metric:

d(F,G) := inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x + ε) + ε for all x}

(the French probabilist Paul LÉVY (1886-1971) in 1937) (it is not obvious,
but it is true, that d is a metric): if Fn, F are distribution functions,

Fn → F in distribution ⇔ d(Fn, F ) → 0.

This is also equivalent to

Fn(x) → F (x) (n →∞) at all continuity points x of F .

(The restriction to continuity points x of F here is vital: take Xn, X as
constants cn, c with cn → c. We should clearly have cn → c in distribution
regarded as random variables; the distribution function F of c is 0 to the left
of c and 1 at c and to the right; pointwise convergence takes place everywhere
except c.)

We quote that the Lévy metric is complete.
Convergence in probability (‘intermediate’) implies convergence in distri-

bution (‘weak’). We quote this.
There is no converse, but there is a partial converse. If Xn converges

in distribution to a constant c, then since the distribution function of the
constant c is 0 to the left of c and 1 at c and to the right, it is easy to see
that in fact Xn → c in probability.

5. Characteristic functions.
If X has distribution function F , the characteristic function (CF) of X is

φ(t) := EeitX =
∫ ∞

−∞
eitxdF (x) (t ∈ R).

This is also the Fourier-Stieltjes transform of F (‘Fourier transform, Stieltjes
integral’).

The CF has a number of important properties.
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1. Existence. The CF always exists (the integral defining it always con-
verges). Indeed,

|φ(t)| = |
∫

eitxdF (x)| ≤
∫
|eitx|dF (x) =

∫
1dF (x) = 1.

2. Continuity. The CF is continuous, indeed uniformly continuous:

|φ(t + u)− φ(t)| = |
∫

eitx(eitu − 1)dF (x)| ≤
∫
|eitu − 1|.1dF (x) → 0

as t → 0, by dominated convergence.
3. Uniqueness. The CF determines the distribution function uniquely (so
taking the CF loses no information). This is a general property of Fourier
transforms; we quote this.
4. Inversion formula. There is an inversion formula (due to Lévy, 1937)
giving the distribution function in terms of the CF. We omit this, as the
formula is rarely useful.
5. Continuity theorem (Lévy, 1937). (i) If Fn, F have CFs φn, φ, and Fn → F
in distribution, then

φn(t) → φ(t) (n →∞) uniformly in t on compact sets.

(ii) Conversely, if φn(t) → φ(t) pointwise, and the limit function φ(t) is
continuous at t = 0, then φ is the CF of a distribution function, F say, and
Fn → F in distribution.
6. Moments. For a random variable X, the kth moment of X is defined by

µk := E[Xk].

The first moment is the mean or expectation, µ = E[X]. (We use nota-
tion such as µX if there are other random variables present. Context will
show whether µ denotes a mean or a measure.) If X has k moments (fi-
nite), we can expand the exponential eitX in the definition of the CF and
get

∑k
j=0(it)

j.E[Xj]/j! or
∑k

j=0(it)
jµj/j!, plus an error term. Analogy with

Taylor’s Theorem in Real Analysis suggests that this error term should be
o(tk) at t → 0. This is true; we quote it: if X has k moments finite, its CF
satisfies

φ(t) =
k∑

j=0

(it)jµj/j! + o(tk) (t → 0).
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6. Independence.
Recall from your first course in Probability that events A, B are called

independent if
P (A ∩B) = P (A).P (B)

(independence corresponds to product measures: see L9). Since P (A) = EIA,
this says

E[IA.IB] = E[IA].E[IB].

We generalize this. A family of events is independent if for any finite sub-
family Ak (k = 1, . . . , n), the probability of the intersection of any subfamily
is the product of the probabilities. A family of random variables is indepen-
dent if, for any finite subfamily {Xk} (k = 1, . . . , n) and any xk, the events
{Xk ≤ xk} are independent; equivalently, the events {Xk ∈ Ak} are indepen-
dent for all measurable Ak.

Theorem (Multiplication Theorem). If X1, . . . , Xn are independent and
g1, . . . , gn are measurable,
(i) g1(X1), . . . , gn(Xn) are independent;
(ii) If the gk are bounded,

E[
n∏

k=1

gk(Xk)] =
n∏

k=1

Egk(Xk).

Proof. (i)

P (gk(Xk) ∈ Ak, k = 1, . . . , n) = P (Xk ∈ g−1
k (Ak), k = 1, . . . , n)

=
n∏

k=1

P (Xk ∈ g−1
k (Ak)) =

n∏

k=1

P (gk(Xk) ∈ Ak),

proving independence of the gk(Xk).
(ii) For simple gk, gk =

∑
ck,ikIAk,ik

,

E[
n∏

i=1

gi(Xi)] = E[
n∏

k=1

∑
ck,ikIAk,ik

(Xk)].

By independence, on the RHS E[
∏

I] = E[I(∩)] = P (∩) =
∏

P (.) =
∏

E[I].
The RHS thus factorizes, giving the result for simple gk. The result extends
to the general case by approximation. //
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