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Then the joint distribution function is given by

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi) =
n∏

i=1

Fi(xi),

where Fi is the distribution function of Xi. The Fi are called the marginal
distribution functions:

Random variables are independent iff their joint distribution function
factorizes into the product of the marginals.

Then

ϕ(t1, . . . , tk) =
∫
. . .

∫
exp{i(t1x1 + . . .+ tkxk}dF (x1, . . . , xn)

=
n∏

j=1

∫
exp{itjxj}dFj(xj) =

n∏
j=1

ϕj(tj) :

Random variables are independent iff their joint CF factorizes into the
product of the marginals.

Convolutions.
If X, Y are independent, with distribution functions F , G and CFs ϕ,

ψ, the distribution of their sum X + Y is called the convolution (German:
Faltung) of their distributions. If X+Y has distribution function H and CF
χ,

χ(t) := Eeit(X+Y ) = E[eitX .eitY ] = E[eitX ].E[eitY ] = ϕ(t).ψ(t),

by the Multiplication Theorem:

The CF of an independent sum is the product of the CFs.

So the CF turns the easy operation of adding independent random vari-
ables into the equally easy operation of multiplying CFs. By contrast, the
situation for distribution functions is less simple. If X, Y , X + Y have
distribution functions F , G, H,

H(z) := P (X + Y ≤ z) =
∫ ∫

{x+y≤z}
dF (x)dG(y).
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So
H(z) =

∫
F (z − y)dG(y) =

∫
G(z − x)dF (x);

we write either expression as (F ∗G)(z). When F , G have densities f , g, H
has density

h(x) =
∫
f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

In fact, if either of F , G has a density, so does F ∗G.
So by induction, if we add n independent random variables,

(i) the CFs multiply;
(ii) the distribution is a multiple convolution, involving n− 1 integrations.
As n increases, n− 1 integrations become intractable, so we use CFs.

Suppose now that X1, . . . , Xn, . . . are independent and identically dis-
tributed (iid) random variables, with distribution F , CF ϕ, mean µ and
variance σ2. Recall that the variance (variability) is a measure of random-
ness,

σ2 := E[(X−EX)2] = E[X2−2EX.X+(EX)2] = E[X2]−2EX.EX+[EX]2 :

var X = E(X2)− (EX)2.

(We know from the definition that var X ≥ 0; this also follows from the last
equation by the Cauchy-Schwarz inequality.)

7. The Weak Law of Large Numbers (WLLN) and the Central
Limit Theorem (CLT).

Recall that by Real Analysis,

(1 +
x

n
)n → ex (n→ ∞)

(this expresses compound interest, or exponential growth, as the limit of
simple interest as the interest is compounded more and more often). This
extends also to complex number z, and to zn → z:

(1 +
zn
n
)n → ez (n→ ∞).

The next result is due to Lévy in 1925, and in more general form to
the Russian probabilist A. Ya. KHINCHIN (1894-1956) in 1929 and to Kol-
mogorov in 1928/29.
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Theorem (Weak Law of Large Numbers, WLLN). If Xi are iid with
mean µ,

1

n

n∑
1

Xk → µ (n→ ∞) in probability.

Proof. If the Xk have CF ϕ(t), then as the mean µ exists ϕ(t) = 1+ iµt+o(t)
as t→ 0. So (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n = [1 +
iµt

n
+ o(1/n)]n,

for fixed t and n → ∞. By above, the RHS has limit eiµt as n → ∞. But
eiµt is the CF of the constant µ. So by Lévy’s continuity theorem,

(X1 + . . .+Xn)/n→ µ (n→ ∞) in distribution.

Since the limit µ is constant, by II.4 (L11), this gives

(X1 + . . .+Xn)/n→ µ (n→ ∞) in probability. //

As the name implies, the Weak LLN can be strengthened, to the Strong
LLN (with a.s. convergence in place of convergence in probability). We turn
to this later, but proceed with a refinement of the method above, in which
we retain one more term in the Taylor expansion of the CF. Note first that
the CF of the standard normal distribution Φ = N(0, 1), with density ϕ(x)
and distribution function Φ(x)

ϕ(x) :=
e−x2/2

√
2π

, Φ(x) :=
∫ x

∞
ϕ(u)du

is e−t2/2. The easiest way to show this is to show∫ +∞

−∞
etx.e−x2/2dx/

√
2π = et

2/2

by completing the square, and then replace t by it by analytic continuation
to get, for real t, ∫ +∞

−∞
eitx.e−x2/2dx/

√
2π = e−t2/2

Or, one can use contour integration and Cauchy’s theorem. For both meth-
ods, see e.g. Bingham and Fry, p. 21.
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Theorem (Central Limit Theorem, CLT). If X1, . . . Xn, . . . are iid with
mean µ and variance σ2, and Sn := X1 + . . .+Xn, then

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n→ ∞) in distribution.

Proof. When we subtract µ from each Xk, we change the mean from µ to
0 and the second moment from µ2 to the variance σ2. So by the moments
property of CFs, Xk−µ has CF 1− 1

2
σ2t2+o(t2) as t→ 0. SoX1+. . .+Xn−nµ

has CF

E exp{it(X1 + . . .+Xn − nµ)} = [1− 1

2
σ2t2 + o(t2)]n (t→ 0).

Replace t by t/(σ
√
n) and let n→ ∞:

E exp{it(X1+. . .+Xn−nµ)/(σ
√
n)} = [1−1

2
.
t2

n
+o(1/n)]n → exp{−t2/2} (n→ ∞),

by above. The left is the CF of (Sn − nµ)/(σ
√
n); the right is the CF of

Φ = N(0, 1). By the continuity theorem for CFs, this gives

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n→ ∞) in distribution. //

The first result of this kind is the WLLN for Bernoulli trials (tossing a
coin that falls heads with probability p, tails with probability q := 1− p, due
to Jakob BERNOULLI (1654-1705); Ars conjectandi, 1713, posth.) The gen-
eral WLLN above, and its strengthening the SLLN below, constitute precise
forms of the ‘Law of Averages’, known to the man in the street. The CLT
for Bernoulli trials is due to Abraham de MOIVRE (1667-1754), Doctrine
of Cfhances 1738 (de Moivre found the normal distribution in 1733), later
extended by P. S. de LAPLACE (1749-1827), Théorie Analytiques des Prob-
abilités, 1812. The general CLT is due to J. W. LINDEBERG (1876-1932)
in 1922 (the name ‘central limit theorem’ is due to Pólya, also in 1922). The
CLT is the precise form of the ‘Law of Errors’, known to the physicist in the
street as saying ‘errors are normally distributed about the mean’.
Note. 1. The CLT largely explains why the normal distribution is so ubiqui-
tous in Statistics – basically, this is why Statistics works.
2. The CLT and the normal distribution are static. We shall need their
dynamic counterparts. The stochastic process (dynamic counterpart) corre-
sponding to the normal distribution is Brownian motion (Ch. IV); that of
the CLT is the Erdös-Kac-Donsker invariance principle.
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