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8. The Borel-Cantelli lemmas and the zero-one law.

The following results are due to Borel in 1909, F. P. CANTELLI (1906-
1985) in 1917.

Theorem (Borel-Cantelli lemmas). If An are independent events, A :=
lim supAn = {An i.o.}:
(i) If

∑
P (An) < ∞, then P (A) = 0.

(ii) If
∑

P (An) = ∞ and the An are independent, then P (A) = 1.

Proof. (i) A = lim supAn = ∩n ∪∞
m=n Am, so A ⊂ ∪∞

m=nAm for each n. So

P (A) ≤ P (∪∞
m=nAm) ≤

∞∑
m=n

P (Am) → 0 (n → ∞)

(tail of a convergent series): P (A) = 0.
(ii) By the De Morgan laws, Ac = ∪n ∩∞

m=n A
c
m. But for each n

P (∩∞
m=nA

c
m) = lim

N
P (∩N

m=nA
c
m) (σ-additivity)

=
N∏

m=n

(1− P (Am)) (independence)

≤
N∏

m=n

exp{−P (Am)} (1− x ≤ e−x for x ≥ 0)

= exp{−
N∑

m=n

P (Am)}

→ 0 (N → ∞),

as
∑

P (An) diverges. So ∩∞
m=nA

c
m) is null. So their union Ac = ∪n ∩∞

m=n A
c
m

is null, giving the result. //

Combining: if the An are independent, P (A) = 0 or 1 according as∑
P (An) converges or diverges. More generally, call an event A depend-

ing on events An a tail event if it is invariant under deletion of finitely many
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of the An. Then Kolmogorov’s zero-one law states that all tail events of in-
dependent events have probability 0 or 1.

9. Infinite product measures; replication and copies.

Independence corresponds to product measures (L9, L11); the construc-
tion of the product measure of two measure (I.7, L9) extends to finite prod-
ucts of measures by induction. We now consider the extension to infinite
products. This will model generation of a sequence of independent identi-
cally distributed (iid) random variables, called replications or copies. Think
of repeatedly tossing a coin, or repeatedly sampling in Statistics.

In fact the construction is a special case of a much more general construc-
tion (in which independence is not assumed), called the Daniell-Kolmogorov
theorem, which we shall meet later in connection with Stochastic Processes
(Ch. III). But for now, consider a sequence of measure spaces (Ωn,An, µn),
n = 1, 2, . . .). We form the cartesian product Ω := Ω1× . . .×Ωn× . . .. Call a
set A ⊂ Ω a cylinder set if it is of the form A = A1 × . . .×An × . . ., with all
but finitely many of the An, say An1 , . . . , Ank

, equal to Ωn. Define a measure
µ on the class C of such cylinder sets by

µ(A) := µn1(An1)× . . .× µnk
(Ank

)

(thus µ(A) expresses independence on the cylinder sets). The measure µ
extends uniquely to a measure on the σ-field A := σ(C) generated by the
cylinder sets. The resulting probability space is called the infinite product of
the coordinate probability spaces, written

(Ω,A, µ) = ×∞
n=1(Ωn,An, µn).

Example: Infinite coin tossing and the uniform distribution.
Take the Lebesgue probability space ([0, 1],L, µ) modelling the uniform dis-
tribution U [0, 1] on the unit interval (probability = length). For a random
variable X ∼ U [0, 1], take its dyadic expansion

X =
∞∑
1

ϵn/2
n.

Thus ϵ1 = 0 iff X ∈ [0, 1/2), 1 iff X ∈ [1/2, 1) (or [1/2, 1]: we can omit 1,
as it carries 0 probability). If ϵ1, . . . , ϵn−1 are already defined, on the dyadic
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intervals [k/2n−1, (k + 1)/2n−1), split each interval into two halves: ϵn = 0
on the left half, 1 on the right half. This construction shows that ϵ1, . . . , ϵn
are independent, coin-tossing random variables (Bernoulli with parameter
1/2: take values 0, 1 with probability 1/2 each), for each n. So the ϵ1 are
independent coin-tosses.

Conversely, given ϵn independent coin tosses, form X :=
∑∞

1 ϵn/2
n. Then

Xn :=
∑n

1 ϵk/2
k → X a.s. Its distribution function has jumps 1/2n at k/2n,

k = 0, 1, . . . , 2n − 1. This ‘saw-tooth jump function’ converges to x on [0, 1],
the distribution function of U [0, 1]. So X ∼ U [0, 1]. So:

If X =
∑∞

1 ϵn/2
n, X ∼ U [0, 1] iff ϵn are independent coin tosses.

So the Lebesgue probability space models both length on the unit inter-
val and infinitely many independent coin tosses. Incidentally, this shows
that the hard Measure Theory content of construction of Lebesgue measure
(Carathéodory’s Extension Theorem, which we have quoted) is the same
as that of the construction of the infinite product space for repeated coin
tossing (which we have sketched above, and referred forward to the Daniell-
Kolmogorov theorem – which we shall also quote).

We could instead let the ϵn take values ±1 with probability 1/2. As one
might expect, this leads instead to the uniform distribution U [−1, 1] (density
1/2 on [−1, 1]). For such ϵn, the CF is (eit + e−it)/2 = cos t. So the CF of
Xn above is

E exp{itXn} = E exp{it
n∑
1

ϵk/2
k} =

n∏
1

E exp itϵk/2
k =

n∏
1

cos(t/2k).

Now

sin t = 2 cos t/2 sin t/2 = . . . = 2n cos t/2 . . . cos t/2n sin t/2n.

So

E exp{itXn} =
sin t

2n sin t/2n
→ sin t

t
(n → ∞),

the CF of U [−1, 1]: ∫ 1

−1
eitx.

1

2
dx =

eit − e−it

2it
=

sin t

t
.

The case [0, 1] maps to the case [−1, 1] under the affine map x 7→ 2x− 1.
The mathematics above yields infinite replication from the uniform dis-

tribution U [0, 1]. Take the ϵn, and rearrange them into a two-suffix array ϵjk
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(as with Cantor’s proof of 1873 that the rationals are countable). The ϵjk
are all independent, so the Xj :=

∑
ϵjk/2

k are independent, and U [0, 1] by
above.

If F is a distribution function (right-continuous; increasing from 0 at −∞
to 1 at ∞), define its (left-continuous) inverse function by

F−1(t) := inf{F (x) ≥ t} (0 < t < 1).

Then if U ∼ U [0, 1], X := F−1(U) ∼ F . For, {X ≤ x} = {F−1(U) ≤ x} =
{U ≤ F (x)}, which has probability F (x) as U is uniform. By this means
(called the probability integral transformation – see the Introductory Lectures
on Statistics, IntroStat under Handouts on the course website) we can pass
from generating copies from the uniform distribution (say by Monte Carlo
simulation) to generating copies from the distribution F . Since by above we
can use one uniform to generate a sequence of independent copies of uni-
forms, we may then generate a sequence of independent copies drawn from
F . In particular, from one uniform we can generate an infinite sequence of
copies of standard normals. We shall see in Ch. III that from this we can
generate Brownian motion, the prototypical stochastic process. So in this
sense, the Lebesgue probability space, from which we can draw a uniform,
is all we need – e.g. to generate Brownian motion. So everything rests on
Lebesgue measure (as it should!)

Chebyshev’s inequality.

The next result is due to P. L. CHEBYSHEV (1821-1984) in 1867.

Theorem (Chebychev’s inequality). If X has mean µ and variance σ2,
and ϵ > 0,

P (|X − µ| ≥ ϵ) ≤ σ2/ϵ2.

Proof.

σ2 =
∫
Ω
|X − µ|2dP ≥

∫
|X−µ|2≥ϵ

|X − µ|2dP ≥ ϵ2P (|X − µ| ≥ e). //
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