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Lemma. (i) If X ≥ 0 has mean µ and distribution function F ,

∞∑
1

P (|X| ≥ n) ≤ E|X| ≤ 1 +
∞∑
1

P (|X| ≥ n).

(ii) EX =
∫∞
0 (1− F (x))dx.

Proof. (i) For i ≥ 0, let Ai := {i ≤ X < i+ 1}. Then
∑

iP (Ai) ≤ EX =
∫

XdP =
∑
i

∫
Ai

dP <
∑

(i+ 1)P (Ai) = 1 +
∑
i

iP (Ai).

But ∑
i

iP (Ai) =
∑
i

i∑
j=1

1P (Ai) =
∑
j

∑
i≥j

P (Ai) =
∑
j

P (X ≥ j).

(ii) As the mean exists, x(1− F (x)) =
∫∞
x xdF (u) ≤

∫∞
x udF (u) → 0 (tail of

a convergent integral), so x(1− F (x)) → 0. So

EX =
∫

XdP =
∫ ∞

0
xdF (x) (by the transformation formula)

= −
∫ ∞

0
xd(1−F (x)) = −[x(1−F (x))]∞0 +

∫ ∞

0
(1−F (x)dx =

∫ ∞

0
(1−F (x))dx,

integrating by parts. //

10. The Strong Law of Large Numbers (SLLN).

Theorem (Strong Law of Large Numbers, Kolmogorov, 1933). For
Xn iid, (X1 + . . . + Xn)/n converges to a constant µ a.s. as n → ∞ iff
E|X| < ∞, and then µ = EX.

Proof. First take the case Xn non-negative. If E|X|(= EX) < ∞, write µ
for EX. Truncate Xn at the value n to obtain Yn:

Yn := Xn (Xn < n), 0 (Xn ≥ n).
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By the Lemma,∑
P (Xn ̸= Yn) =

∑
P (Xn ≥ n) =

∑
P (X1 ≥ n) ≤ EX1 < ∞.

So by the first Borel-Cantelli lemma, a.s. only finitely many of the events
Xn ̸= Yn) occur. So

1

n

n∑
1

(Xk − Yk) → 0 a.s.,

so it suffices to show that, writing Sn :=
∑n

1 Yk,

Sn/n =
1

n

n∑
1

Yk → µ a.s. (∗)

Choose q > 1, and write nk for the integer part of qk. Since
∑

1/n2
k is

essentially a convergent geometric progression, it is at most a multiple of its
first term: ∞∑

m

1/n2
k ≤ C/n2

m

for some constant C. Also nk+1/nk → q as k → ∞. For q > 1, ϵ > 0,

∑
P (|Snk

− E(Snk
)| > ϵ) ≤ 1

ϵ2
∑

k
var(Snk

)/n2
k, (∗∗)

by Chebychev’s inequality (L13). Variances add over independent sum-
mands, so varSn =

∑n
1 varYi ≤ ∑n

1 E[Y 2
i ]. Substitute this into (∗∗) and

change the order of summation on the right from 1 ≤ i ≤ nk to first k with
nk ≥ i and then over i. The inner sum gives at most C/n2

k ≤ C/i2. So

∑
P (|Snk

− E(Snk
)|/nk > ϵ) ≤ C

ϵ2
∑ 1

i2
E[Y 2

i ].

Let Aij := (j − 1 ≤ Xi < j); P (Aij) = P (A1j), as the Xi are identi-
cally distributed. Note that (arguing as in the proof of the Integral Test for
convergent series)

∞∑
i=j

1/i2 − 1/j2 ≤
∫ ∞

j
dx/x2 = 1/j ≤

∞∑
i=j

1/i2 :
∞∑
i=j

1/i2 ≤ 1/j + 1/j2 ≤ 2/j.
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Now

∑ 1

i2
E[Y 2

i ] =
∞∑
1

1

i2

i∑
j=1

E[Y 2
i I(Aij)]

≤
∞∑
1

1

i2

i∑
j=1

j2P (Aij)

=
∞∑
j=1

j2P (Aij).
∑
i≥j

1/i2

≤
∞∑
j=1

j2P (Aij).2/j ≤ 2[1 + EX] < ∞,

by the integral-test argument above and the Lemma, (i), as EX < ∞, given.
Combining, ∑

P (|Snk
− E(Snk

|/nk > ϵ) < ∞,

and so
[Snk

− E(Snk
]/nk → 0 a.s. (k → ∞),

by the first Borel-Cantelli lemma. Also

EYn = E[XnIXn<n] = E[X1IX1<n] → EX1 = µ (n → ∞),

by monotone convergence. Averaging preserves convergence, so

1

nk

ESnk
=

1

nk

nk∑
i=1

E[Yi] → µ (n → ∞).

Combining,
Snk

/nk → µ (k → ∞) a.s.

This proves the result along the ‘nearly geometric’ subsequence nk. It re-
mains to fill in the gaps. Since the Yn are non-negative, Sn is non-decreasing.
So for nk ≤ m ≤ nk+1,

Snk

nk+1

≤ Sm

m
≤

Snk+1

nk

.

Let k → ∞: since Snk
/nk → µ and nk+1/nk → q,

µ/q ≤ lim inf Sm/m ≤ lim supSm/m ≤ µq.
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Letting q ↓ 1 gives
Sm/m → µ,

which is (∗), completing the proof one way in the non-negative case. The
general case follows by splitting into positive and negative parts, as usual.

Conversely, if Σn
1Xk/n → µ a.s., then also Σn−1

1 Xk/n = [(n−1)/n].Σn−1
1 Xk/(n−

1) → µ also. Subtracting, Xn/n → 0 a.s. Since the events (|Xn| ≥ n) are
independent, the second Borel-Cantelli lemma gives∑

P (|X1| ≥ n) =
∑

P (|Xn| ≥ n) < ∞.

This gives E|X| < ∞ by the Lemma. The conclusion of the first part now
applies, and this completes the proof. //

Note. 1. Kolmogorov’s SLLN of 1933 completes the story begun with
Bernoulli’s theorem in 1713. It gives precise form to the intuitive idea of
the ‘Law of Averages’ – e.g., thinking about a probability as a long-run fre-
quency. What this essentially says is that (thinking of a random variable as
its mean plus a random error) independent errors tend to cancel. Any form
of the LLN is really a result about cancellation.
2. Independence is not needed here. Strongly dependent errors need not can-
cel, but weakly dependent errors do (weak dependence can be made precise
in many ways!). Pairwise independence suffices (N. Etemadi, 1981).
3. There are many proofs of SLLN. The one we give is adapted from [GS],
Section 7.5. Others use Kolmogorov’s inequality (a maximal inequality), or
Kolmogorov’s three-series theorem (for random series). The SLLN follows
from the Martingale Convergence Theorem (below), or more simply from
the Reversed Martingale Convergence Theorem ([S], 18.8). Another gener-
alization of SLLN is the Pointwise Ergodic Theorem (due to Birkhoff and
Khinchin, which originates in Statistical Mechanics). But the Ergodic Theo-
rem is different: one can have a.s. convergence without the mean being finite.
4. With more moments finite, stronger results can be given (e.g., the Marcinkiewicz-
Zygmund SLLN of 1937, with p moments finite, 1 ≤ p < 2.
5. The SLLN generalizes in full to infinite-dimensional situations (Banach
spaces).
6. The SLLN (in which we divide by n) and the CLT (in which we divide by√
n form two of the three main limit theorems of Probability Theory. The

third is the Law of the Iterated Logarithm (LIL – Khinchin, 1924), which is
intermediate: here we divide by

√
n log log n.
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