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III. Stochastic processes; Martingales; Brownian motion

1. Filtrations; Finite-dimensional Distributions

We take a stochastic basis (II.16) (Ω, {Ft, }, F , P ) (or filtered probability
space), which following Meyer we assume satisfies the usual conditions (con-
ditions habituelles):
a. completeness: each Ft contains all P -null sets of F ;
b. the filtration is right-continuous, i.e. Ft = Ft+ := ∩s>tFs.
A stochastic process X = (X(t))t≥0 is a family of random variables defined
on a stochastic basis. We say X is adapted if X(t) ∈ Ft (i.e. X(t) is Ft-
measurable) for each t: thus X(t) is known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time points in [0,∞), (X(t1), . . . , X(tn)) is
a random n-vector, with a distribution, µ(t1, . . . , tn) say. The class of all such
distributions as {t1, . . . , tn} ranges over all finite subsets of [0,∞) is called
the class of all finite-dimensional distributions of X. These satisfy certain
obvious consistency conditions:
DK1. deletion of one point ti can be obtained by ‘integrating out the un-
wanted variable’, as usual when passing from joint to marginal distributions;
DK2. permutation of the times ti permutes the arguments of the measure
µ(t1, . . . , tn) on Rn in the same way.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the Daniell-Kolmogorov theorem). This classical result (due
to P.J. Daniell in 1918 and A.N. Kolmogorov in 1933) is the basic existence
theorem for stochastic processes. For the proof, which depends on compact-
ness arguments, see e.g. [K].

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realize X = (X(t, ω))t≥0 as a random continuous function, i.e. a
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member of C[0,∞); such a process X is called path-continuous (since the
map t → X(t, ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case
of Brownian motion, for example, and its relatives. Sometimes we need to
allow our random function X(t, ω) to have jumps. It is then customary, and
convenient, to require X(t) to be right-continuous with left limits (RCLL),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for
instance, for the Poisson process and its relatives (see below).

General results on realisability – whether or not it is possible to realize, or
obtain, a process so as to have its paths in a particular function space – are
known; see for example the Kolmogorov-Ĉentsov theorem. For our purposes,
however, it is usually better to construct the processes we need directly on
the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization etc.) see e.g.
the classic book [D].

There are several ways to define ’sameness’ of two processes X and Y .
We say
(i) X and Y have the same finite-dimensional distributions if, for any integer
n and {t1, · · · , tn} a finite set of time points in [0,∞), the random vectors
(X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn)) have the same distribution;
(ii) Y is a modification of X if, for every t ≥ 0, we have P (Xt = Yt) = 1;
(iii) X and Y are indistinguishable if almost all their sample paths agree:

P [Xt = Yt; ∀0 ≤ t < ∞] = 1.

Indistinguishable processes are modifications of each other; the converse is
not true in general. However, if both processes have right-continuous sample
paths, the two concepts are equivalent. This will cover the processes we
encounter in this course.

A process is called progressively measurable if the map (t, ω) 7→ Xt(ω)
is measurable, for each t ≥ 0. Progressive measurability holds for adapted
processes with right-continuous (or left-continuous) paths – and so always in
the generality in which we work.

Finally, a random variable τ : Ω → [0,∞] is a stopping time if {τ ≤ t} ∈
Ft for all t ≥ 0.

2



If {τ < t} ∈ Ft for all t, τ is called an optional time. For right-continuous
filtrations (as here, under the usual conditions) the concepts of stopping and
optional times are equivalent.

For a set A ⊂ Rd and a stochastic process X, we can define the hitting
time of A for X as

τA := inf{t > 0 : Xt ∈ A}.
For our usual situation (RCLL processes and Borel sets) hitting times are
stopping times.

We will also need the stopping time σ-algebra Fτ defined as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft.

Intuitively, Fτ represents the events known at time τ .
The continuous-time theory is technically much harder than the discrete-

time theory, for two reasons:
1. questions of path-regularity arise in continuous time but not in discrete
time;
2. uncountable operations (such as taking the supremum over an interval)
arise in continuous time. But measure theory is constructed using countable
operations: uncountable operations risk losing measurability.
This is why discrete and continuous time are often treated separately.

2. Martingales: discrete time

We refer for a fuller account to [W].
Definition. A process X = (Xn) in discrete time is called a martingale (mg)
relative to ({Fn}, P ) if
(i) X is adapted (to {Fn});
(ii) E|Xn| < ∞ for all n;
(iii) [Xn|Fn−1] = Xn−1 P -a.s.
X is a supermartingale (supermg) if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale (submg) if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Martingales have a useful interpretation in terms of dynamic games: a mg
is ‘constant on average’, and models a fair game; a supermg is ‘decreasing
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on average’, and models an unfavourable game; a submg is ‘increasing on
average’, and models a favourable game.
Note. 1. Martingales have many connections with harmonic functions in
probabilistic potential theory. The terminology in the inequalities above
comes from this: supermartingales correspond to superharmonic functions,
submartingales to subharmonic functions.
2. X is a submg (supermg) iff −X is a supermg (submg); X is a mg if and
only if it is both a submg and a supermg.
3. (Xn) is a mg if and only if (Xn −X0) is a mg. So we may without loss of
generality take X0 = 0 when convenient.
4. If X is a martingale, then for m < n using the iterated conditional
expectation and the martingale property repeatedly (all equalities are in the
a.s.-sense)

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] = E[Xn−1|Fm]
= . . . = E[Xm|Fm] = Xm,

and similarly for submgs, supermgs.
The word ‘martingale’ is taken from an article of harness, to control a

horse’s head. The word also means a system of gambling which consists in
doubling the stake when losing in order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
The classic exposition is a chapter in Doob’s book [D] of 1953.

Examples. 1. Mean zero random walk: Sn =
∑

Xi, with Xi independent
with E(Xi) = 0 is a mg (submg: positive mean; supermg: negative mean).
2. Stock prices: Sn = S0ζ1 · · · ζn with ζi independent positive r.vs with finite
first moment.
3. Accumulating data about a random variable ([W], pp. 96, 166–167). If
ξ ∈ L1(Ω,F ,P), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ
based on knowledge at time n), then using iterated conditional expectations

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1] = E[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale. One has the convergence

Mn → M∞ := E[ξ|F∞] a.s. and in L1;

see [W], Ch. 8.
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