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Stopping Times and Optional Stopping
Recall (L17) that a random variable τ taking values in {0, 1, 2, . . . ; +∞}

is called a stopping time if

{τ ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn ∀ n ≤ ∞.

From {τ = n} = {τ ≤ n} \ {τ ≤ n− 1} and {τ ≤ n} =
∪

k≤n{τ = k}, we see
the equivalent characterization

{τ = n} ∈ Fn ∀ n ≤ ∞.

Call a stopping time τ bounded if there is a constant K such that P (τ ≤
K) = 1. (Since τ(ω) ≤ K for some constant K and all ω ∈ Ω \ N with
P (N) = 0 all identities hold true except on a null set, i.e. a.s.)

Example. Suppose (Xn) is an adapted process and we are interested in the
time of first entry of X into a Borel set B (typically one might have B =
[c,∞)):

τ = inf{n ≥ 0 : Xn ∈ B}.
Now {τ ≤ n} =

∪
k≤n{Xk ∈ B} ∈ Fn and τ = ∞ if X never enters B. Thus

τ is a stopping time. Intuitively, think of τ as a time at which you decide
to quit a gambling game: whether or not you quit at time n depends only
on the history up to and including time n – NOT the future. Thus stopping
times model gambling and other situations where there is no foreknowledge,
or prescience of the future; in particular, in the financial context, where there
is no insider trading. Furthermore since a gambler cannot cheat the system
the expectation of his hypothetical fortune (playing with unit stake) should
equal his initial fortune.

Theorem (Doob’s Stopping-time Principle. Let τ be a bounded stop-
ping time and X = (Xn) a martingale. Then Xτ is integrable, and

E(Xτ ) = E(X0).

Proof. Assume τ(ω) ≤ K for all ω, where we can take K to be an integer
and write

Xτ(ω)(ω) =
∞∑
k=0

Xk(ω)I(τ(ω) = k) =
K∑
k=0

Xk(ω)I(τ(ω) = k).
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Then

E(Xτ ) = E[
K∑
k=0

XkI(τ = k)] (by the decomposition above)

=
K∑
k=0

E[XkI(τ = k)] (linearity of E)

=
∑K

k=0 E[E(XK |Fk)I(τ = k)] (X a mg, {τ = k} ∈ Fk )

=
K∑
k=0

E[XKI(τ = k)] (defn. of conditional expectation)

= E[XK

K∑
k=0

I(τ = k)] (linearity of E)

= E[XK ] (the indicators sum to 1)

= E[X0] (X a mg) //.

The stopping time principle holds also true if X = (Xn) is a supermg;
then the conclusion is

EXτ ≤ EX0.

Also, alternative conditions such as
(i) X = (Xn) is bounded (|Xn|(ω) ≤ L for some L and all n, ω);
(ii) Eτ < ∞ and (Xn−Xn−1) is bounded; suffice for the proof of the stopping
time principle.

The stopping time principle is important in many areas, such as sequential
analysis in statistics.

We now wish to create the concept of the σ-algebra of events observable
up to a stopping time τ , in analogy to the σ-algebra Fn which represents the
events observable up to time n.
Definition. Let τ be a stopping time. The stopping time σ−algebra Fτ is
defined to be

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, for all n}.

Proposition. For τ a stopping time, Fτ is a σ−algebra.

Proof. We simply have to check the defining properties. Clearly Ω, ∅ are in
Fτ . Also for A ∈ Fτ we find

Ac ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn,
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thus Ac ∈ Fτ . Finally, for a family Ai ∈ Fτ , i = 1, 2, . . . we have( ∞∪
i=1

Ai

)
∩ {τ ≤ n} =

∞∪
i=1

(Ai ∩ {τ ≤ n}) ∈ Fn,

showing
∪∞

i=1 Ai ∈ Fτ . //

One can show similarly that for σ, τ stopping times with σ ≤ τ , Fσ ⊆ Fτ .
Similarly, for any adapted sequence of random variables X = (Xn) and a.s.
finite stopping time τ , define

Xτ :=
∞∑
n=0

XnI(τ = n).

Then Xτ is Fτ -measurable.
We are now in position to obtain an important extension of the Stopping-

Time Principle.

Theorem (Doob’s Optional-Sampling Theorem, OST. Let X = (Xn)
be a mg and σ, τ be bounded stopping times with σ ≤ τ . Then

E [Xτ |Fσ] = Xσ

and thus E(Xτ ) = E(Xσ).

Proof. First observe that Xτ and Xσ are integrable (use the sum representa-
tion and the fact that τ is bounded by an integerK) andXσ is Fσ-measurable
by above. So it only remains to prove that

E(IAXτ ) = E(IAXσ) ∀A ∈ Fσ.

For any such fixed A ∈ Fσ, define ρ by

ρ(ω) = σ(ω)IA(ω) + τ(ω)IAc(ω).

Since
{ρ ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {τ ≤ n}) ∈ Fn

ρ is a stopping time, and from ρ ≤ τ we see that ρ is bounded. So the STP
implies E(Xρ) = E(X0) = E(Xτ ). But

E(Xρ) = E (XσIA +XτIAc) ,
E(Xτ ) = E (XτIA +XτIAc) .
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So subtracting yields the result. //

We quote a further characterization of the martingale property. Let
X = (Xn) be an adapted sequence of random variables with E(|Xn|) < ∞
for all n and E(Xτ ) = 0 for all bounded stopping times τ . Then X is a
martingale.

Write Xτ = (Xτ
n) for the sequence X = (Xn) stopped at time τ , where

we define Xτ
n(ω) := Xτ(ω)∧n(ω). One can show

(i) If X is adapted and τ is a stopping time, then the stopped sequence Xτ

is adapted.
(ii) If X is a martingale (super-, submartingale) and τ is a stopping time,
Xτ is a martingale (super-, submartingale).

Examples and Applications.
1. Simple Random Walk. Recall the simple random walk: Sn :=

∑n
k=1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1 with
equal probability 1/2. Suppose we decide to bet until our net gain is first
+1, then quit. Let τ be the time we quit; τ is a stopping time. The stopping
time τ has been analyzed in detail; see e.g. [GS], S5.3, or Exercise 3.4. From
this, note:
(i) τ < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) Eτ = +∞: the mean waiting-time for this is infinity. Hence also:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet until you get ahead (which happens eventually, by (i)), then
quit. However, as a gambling strategy, this is hopelessly impractical: because
of (ii), you need unlimited time, and because of (iii), you need unlimited cap-
ital – neither of which is realistic.

Notice that the Stopping-time Principle fails here: we start at zero, so
S0 = 0, ES0 = 0; but Sτ = 1, so ESτ = 1. This example shows two things:
1. Conditions are indeed needed here, or the conclusion may fail (none of the
conditions in STP or the alternatives given are satisfied in this example).
2. Any practical gambling (or trading) strategy needs to have some integra-
bility or boundedness restrictions to eliminate such theoretically possible but
practically ridiculous cases.
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