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The Doubling Strategy.
The strategy of doubling when losing – the martingale, according to the

Oxford English Dictionary (S3.3) – has similar properties. We play until the
time τ of our first win. Then τ is a stopping time, and is geometrically dis-
tributed with parameter p = 1/2. If τ = n, our winnings on the nth play are
2n−1 (our previous stake of 1 doubled on each of the previous n − 1 losses).
Our cumulative losses to date are 1 + 2 + . . . + 2n−2 = 2n−1 − 1 (summing
the geometric series), giving us a net gain of 1. The mean time of play is
E(τ) = 2 (so doubling strategies accelerate our eventually certain win to give
a finite expected waiting time for it). But no bound can be put on the losses
one may need to sustain before we win, so again we would need unlimited
capital to implement this strategy – which would be suicidal in practice as a
result.

The Saint Petersburg Game.
A single play of the Saint Petersburg game consists of a sequence of coin

tosses stopped at the first head; if this is the rth toss, the player receives a
prize of $ 2r. (Thus the expected gain is

∑∞
r=1 2

−r.2r = +∞, so the random
variable is not integrable, and martingale theory does not apply.) Let Sn

denote the player’s cumulative gain after n plays of the game. The question
arises as to what the ‘fair price’ of a ticket to play the game is. It turns out
that fair prices exist (in a suitable sense), but the fair price of the nth play
varies with n – surprising, as all the plays are replicas of each other.

Theorem (Doob Decomposition). Let X = (Xn) be an adapted process with
each Xn ∈ L∞. Then X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n

with M a martingale null at zero, A a predictable process null at zero. If also
X is a submartingale (‘increasing on average’), A is increasing: An ≤ An+1

for all n, a.s.

Proof. If X has a Doob decomposition as above,

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An − An−1|Fn−1].
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The first term on the right is zero, as M is a martingale. The second is
An − An−1, since An (and An−1) is Fn−1-measurable by predictability. So

E[Xn −Xn−1|Fn−1] = An − An−1,

and summation gives

An =
n∑

k=1

E[Xk −Xk−1|Fk−1], a.s.

So set A0 = 0 and use this formula to define (An), clearly predictable. We
then use the equation in the Theorem to define (Mn), then a martingale,
giving the Doob decomposition. To see uniqueness, assume two decomposi-
tions, i.e. Xn = X0 +Mn +An = X0 + M̃n + Ãn, then Mn − M̃n = An − Ãn.
Thus the martingale Mn − M̃n is predictable and so must be constant a.s.

If X is a submg, the LHS of the Doob decomposition is ≥ 0, so the RHS
is ≥ 0, i.e. (An) is increasing. //

Although the Doob decomposition is a simple result in discrete time, the
analogue in continuous time – the Doob-Meyer decomposition below – is
deep. This illustrates the contrasts that may arise between the theories of
stochastic processes in discrete and continuous time.

3. Martingales in continuous time
A stochastic process X = (X(t))0≤t<∞ is a martingale (mg) relative to

({Ft}, P ) if
(i) X is adapted, and E|X(t)| < ∞ for all ≤ t < ∞;
(ii) E[X(t)|Fs] = X(s) P - a.s. (0 ≤ s ≤ t),
and similarly for submartingales (with ≤ above)and supermartingales (with
≥).

In continuous time there are regularization results, under which one can
take X(t) RCLL in t (basically t → EX(t) has to be right-continuous). Then
the analogues of the results for discrete-time martingales hold true. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition below, easy in discrete time, is a deep result in continuous time.

Interpretation. Martingales model fair games. Submartingales model
favourable games. Supermartingales model unfavourable games.

2



Martingales represent situations in which there is no drift, or tendency,
though there may be lots of randomness. In the typical statistical situation
where we have data = signal + noise, martingales are used to model the
noise component. It is no surprise that we will be dealing constantly with
such decompositions later (with ‘semi-martingales’).

Closed martingales. Some martingales are of the form

Xt = E[X|Ft] (t ≥ 0)

for some integrable random variable X. Then X is said to close (Xt), which
is called a closed (or closable) martingale, or a regular martingale. It turns
out that closed martingales have specially good convergence properties:

Xt → X∞ (t → ∞) a.s. and in L1,

and then also
Xt = E[X∞|Ft], a.s.

This property is equivalent also to uniform integrability (UI):

supt

∫
{|Xt|>x}

|Xt|dP → 0 (x → ∞).

Doob-Meyer Decomposition. One version in continuous time of the Doob
decomposition in discrete time – called the Doob-Meyer (or the Meyer) de-
composition – follows next but needs one more definition. A process X is
called of class (D) if

{Xτ : τ a finite stopping time}

is uniformly integrable. Then a (càdlàg, adapted) process Z is a submartin-
gale of class (D) if and only if it has a decomposition

Z = Z0 +M + A

with M a uniformly integrable martingale and A a predictable increasing
process, both null at 0. This composition is unique.

Square-integrable Martingales. For M = (Mt) a martingale, write M ∈ M2

if M is L2-bounded:
suptE(M2

t ) < ∞,
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and M ∈ M2
0 if further M0 = 0. Write cM2, cM2

0 for the subclasses of
continuous M .

We quote that for M ∈ M2,M is convergent:

Mt → M∞ a.s. and in mean square

for some random variable M∞ ∈ L2. One can recover M from M∞ by

Mt = E[M∞|Ft].

The bijection
M = (Mt) ↔ M∞

is in fact an isometry, and asM∞ ∈ L2, which is a Hilbert space, so too isM2.

Quadratic Variation. A non-negative right-continuous submartingale is of
class (D). So it has a Doob-Meyer decomposition. We specialize this to X2,
with X ∈ cM2:

X2 = X2
0 +M + A,

with M a continuous martingale and A a continuous (so predictable) and
increasing process. We write

⟨X⟩ := A

here, and call ⟨X⟩ the quadratic variation of X. We shall see later that
this is a crucial tool for the stochastic integral. We shall further introduce a
variant on ⟨X⟩ (the ’angle-bracket process’), called [X] (the ’square-bracket
process’), needed to handle jumps.

Quadratic Covariation.
We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨.⟩ to a bilinear form ⟨., .⟩ with

two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩.

(The polarization identity reflects the Hilbert-space structure of the inner
product ⟨., .⟩.) If N is of finite variation, M ± N has the same quadratic
variation as M , so ⟨M,N⟩ = 0.

Where there is a Hilbert-space structure, one can use the language of
projections, of Pythagoras’ theorem etc., and draw diagrams as in Euclidean
space. The right way to treat the Linear Model of statistics is in such terms
(analysis of variance = ANOVA, sums of squares etc.)
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