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2. Classes of sets.
We adopt the usual notational convention: lower case letters for points,

or elements of sets; capitals for sets; curly capitals for classes of sets.
We begin with the class O of open sets O. Recall that in Euclidean space

– or more generally, a metric space where we have a distance d (generalizing
Euclidean distance) – a set O is open if and only if (iff) for each point x ∈ O,
all points close enough to x also lie in O. Metric spaces are spaces with a
distance, or metric, d(., .) satisfying
(i) the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z);
(ii) d(x, y) = 0 iff x = y.
They were introduced by the French mathematician Maurice FRÉCHET
(1878-1973), in his thesis of 1906.
Note. 1. Often the letters G, G are used instead of O, O (g for geöffnet,
= open in German). Following Schilling [S], we will instead use G, G for
‘generating’.
2. Openness also makes sense more generally, where there may be no distance
concept. Here we choose which sets to declare open, subject to the following
requirements, which abstract the essence of the above:
(i) the empty set ∅ and the whole space Ω are open;
(ii) arbitrary unions of open sets are open;
(iii) finite intersections of open sets are open.
A set Ω with such a family of subsets O ∈ O, (Ω,O), is called a topological
space; O is called the topology; the sets O are called the open sets. Topology
was introduced by the German mathematician Felix HAUSDORFF (1868-
1942), in his book Grundzüge der Mengenlehre (Foundations of set theory)
in 1914.

An open set containing a point x (or more generally, a set containing an
open set containing x) is called a neighbourhood (nhd for short) of x. A point
x is called a closure point (or limit point) of a set A if every nhd of x meets
(= has non-empty intersection with) A. A set is called closed iff it contains
all its closure points. We write F for the class of all closed sets F (f for
fermé, = closed in French).

These concepts are linked:
Proposition.

A set A is closed (open) iff its complement Ac (:= Ω\A) is open (closed).
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Geometrically, the subject of Topology is about properties preserved un-
der continuous deformation. Analytically (which is what concerns us here),
this boils down to a study of openness (or closedness), so here open and
closed are diametrical opposites (recall we pass from one to the other by
taking complements). By contrast, in Measure Theory one of a set and its
complement is as good as the other, so this puts open and closed sets on the
same footing.

Recall (Lecture 1) that we talked about finite and countable additivity.
We will be handling countable set-theoretic operations constantly; we need
some notation for them. If A is a class of sets A,
(i) the class Aσ is the class obtainable from A by countable unions;
(ii) the class Aδ is the class obtainable from A by countable intersections
(σ for Summe, = sum (or union), δ for Durschnitt, = intersection (German
– Hausdorff’s notation)).
Recall also that an arbitrary union of open sets is open, and a finite intersec-
tion of open sets is open. A countable intersection of open sets may well be
closed – e.g. ∩∞n=1(a−1/n, b+1/n) = [a, b]. So Oσ = O, but Oδ is a new class
(warning: the usual notation is Gδ). Similarly, or by taking complements and
using the De Morgan laws

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,

an arbitrary intersection of closed sets is closed, so Fδ = F gives nothing
new, but Fσ gives a new class. One can iterate this, and form new and
bigger classes

O ⊂ Oδ ⊂ Oδσ ⊂ Oδσδ ⊂ . . . ,

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ . . . .

The example ∩∞n=1(a− 1/n, b + 1/n) = [a, b] used above generalizes:

F ⊂ Oδ.

Similarly (or by taking complements and using De Morgan’s Laws),

O ⊂ Fσ.

Taking countable unions of the first and countable intersections of the second,

Fσ ⊂ Oδσ, Oδ ⊂ Fσδ.
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One can continue in this way: each of the classes in the two increasing se-
quences of classes above is properly contained in its upper or lower neighbour
to the right.

Definition. A field (in some books, an algebra) is a class A of subsets of a
set Ω such that
(i) Ω ∈ A;
(ii) A is closed under complements: if A ∈ A, then Ac ∈ A:
(iii) A is closed under unions: if A1, A2 ∈ A, then A1 ∪ A2 ∈ A.
A σ-field (or σ-algebra) is a class A satisfying (i), (ii) and
(iii*) A is closed under countable unions: Aσ = A, or equivalently, if An ∈ A
for n = 1, 2, . . ., then ⋃∞

n=1
An ∈ A.

Defn. For a class G of sets, the σ-field generated by G is σ(G), the smallest
σ-field containing G – equivalently, the intersection of all σ-fields containing
G.
Note. The intersection of two σ-fields, or any number of σ-fields, is again a
σ-field, as one may check from the first definition. Hence the two forms in
the definition above are indeed equivalent.
Defn. In a topological (or metric) space, the Borel σ-field B is the σ-field
generated by the open sets (equivalently, by the closed sets – as σ-fields are
closed under complements).

The increasing sequences of classes obtained from the open sets O and
closed sets F above by taking countable unions and intersections (.σ and .δ)
are all contained in B, and B is the smallest σ-field containing them all. So
we can think of B as closing off each sequence at the right-hand end. The
resulting sequences of classes, starting from O, F and ending with B, form
the Borel hierarchy, so called after the work of Émile BOREL (1871-1956),
from his 1893 thesis on.

We quote from Real Analysis that a set O is open on the line iff it is a
(finite or) countable disjoint union of open intervals. So the open intervals
generate the open sets by countably many set-theoretic operations, and these
in turn generate the Borel sets. Combining, the open intervals (a, b) generate
the Borel sets on the line. Similarly, so do the closed intervals [a, b] (by taking
complements), and the half-open intervals (a, b], [a, b) (by using increasing or
decreasing sequences, as in the example above). We use half-open intervals
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(a, b]: this class is closed, under set-theoretic difference

A \B := A ∩Bc = {x : x ∈ A, x /∈ B}

and union. So each of these four families of intervals forms a family G which
generates B: σ(G) = B.

In practice, it is more economical to use a smaller generating family when
we can. We can do so in the above by restricting to rational end-points a, b
(just take rational approximations an, bn increasing or decreasing to a, b as
needed – cf. the example above).
Note. The class G of (any of the four kinds of) intervals with rational end-
points is countable. But σ(G) = B is uncountable. Recall that the union
of countably many countable sets is countable (Cantor) – but countable set-
theoretic operations on a countable family may generate an uncountable
family, as here.

Similarly in the plane: the rectangles (a, b] × (c, d] generate the planar
open sets. Similarly in 3 dimensions, the cuboids (a1, b1] × (a2, b2] × (a3, b3]
generate the open sets, and in d dimensions, so do the cartesian products
×d

i=1(ai, bi].
The symmetric difference of two sets A and B is

A∆B := (A ∩Bc) ∪ (B ∩ Ac) = (A \B) ∪ (B \ A).

This is the set of points in exactly one of A and B.
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