
spl21.tex
Lecture 21. 26.11.2010

Construction of BM. It suffices to construct BM for t ∈ [0, 1]). This gives
t ∈ [0, n] by dilation, and t ∈ [0,∞) by letting n → ∞. First, take L2[0, 1],
and any complete orthonormal system (cons) (ϕn) on it. Now L2 is a Hilbert
space, under the inner product

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx (or

∫
fg),

so norm ∥f∥ := (
∫
f2)1/2). By Parseval’s identity,∫ 1

0
fg =

∞∑
n=0

⟨f, ϕn⟩⟨g, ϕn⟩

(where convergence of the series on the right is in L2, or in mean square:
∥f −∑n

0 ⟨f, ϕk⟩ϕk∥ → 0 as n → ∞). Now take, for s, t ∈ [0, 1],

f(x) = I[0,s](x), g(x) = I[0,t](x).

Parseval’s identity becomes

min(s, t) =
∞∑
n=0

∫ s

0
ϕn(x)dx

∫ t

0
ϕn(x)dx.

Now take (Zn) independent and identically distributed N(0, 1) (recall from
II.9, L13 that we can construct these, indeed from one X ∼ U [0, 1]), and
write

Wt =
∞∑
n=0

Zn

∫ t

0
ϕn(x)dx.

This is a sum of independent zero-mean random variables. Kolmogorov’s
theorem on random series says that it converges a.s. if the sum of the vari-
ances converges (we quote this). This is

∑∞
n=0(

∫ t
0 ϕn(x)dx)

2, = t by above.
So the series above converges a.s., and by excluding the exceptional null set
from our probability space (as we may), everywhere.

The Haar System. Define

H(t) =



1 on [0, 1
2
),

−1 on [1
2
, 1],

0 else.
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Write H0(t) ≡ 1, and for n ≥ 1, express n in dyadic form as n = 2j + k for
a unique j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1. Using this notation for n, j, k
throughout, write

Hn(t) := 2j/2H(2jt− k)

(so Hn has support [k/2j, (k + 1)/2j]). So if m,n (m ̸= n) have the same
j, HmHn ≡ 0, while if m,n have different js, one can check that HmHn is
2(j1+j2)/2 on half its support, −2(j1+j2)/2 on the other half, so

∫
HmHn = 0.

Also H2
n is 2j on [k/2j, (k + 1)/2j], so

∫
H2

n = 1. Combining:∫
HmHn = δmn,

and (Hn) form an orthonormal system, called the Haar system. For com-
pleteness: the indicator of any dyadic interval [k/2j, (k + 1)/2j] is in the
linear span of the Hn (difference two consecutive Hns and scale). Linear
combinations of such indicators are dense in L2[0, 1]. Combining: the Haar
system (Hn) is a complete orthonormal system in L2[0, 1].

The Schauder System. We obtain the Schauder system by integrating the
Haar system. Consider the triangular function (or ‘tent function’)

∆(t) =



2t on [0, 1
2
),

2(1− t) on [1
2
, 1],

0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and define the nth Schauder function ∆n

by
∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). We see that∫ t

0
H(u)du =

1

2
∆(t),

and similarly ∫ t

0
Hn(u)du = λn∆n(t),
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where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2A(\ = ∈| + ∥ ≥ ∞).

The Schauder system (∆n) is again a cons on L2[0, 1].

Theorem. For (Zn)
∞
0 independent N(0, 1) random variables, λn, ∆n as

above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Lemma. For Zn independent N(0, 1),

|Zn| ≤ C
√
log n ∀n ≥ 2,

for some random variable C < ∞ a.s.

Proof of the Lemma. For x > 1,

P (|Zn| ≥ x) =
2√
2π

∫ ∞

x
e−

u2

2 du ≤
√
2/π

∫ ∞

x
ue−

u2

2 du =
√
2/πe−

x2

2 .

So for any a > 1,

P (|Zn| >
√
2a log n) ≤

√
2/π exp{−a log n} =

√
2/πn−a.

Since
∑

n−a < ∞ for a > 1, the Borel-Cantelli lemma gives

P (|Zn| >
√
2a log n for infinitely many n) = 0.

So

C := sup
n≥2

|Zn|√
log n

< ∞ a.s.

Proof of the Theorem.
1. Convergence. Choose J and M ≥ 2J ; then

∞∑
n=M

λn|Zn|∆n(t) ≤ C
∞∑
M

λn

√
log n∆n(t).
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The right is majorized by

C
∞∑
J

2j−1∑
k=0

1

2
2−j/2

√
j + 1∆2j+k(t)

(perhaps including some extra terms at the beginning, using n = 2j + k <
2j+1, log n ≤ (j + 1) log 2, and ∆n(.) ≥ 0, so the series is absolutely conver-
gent). In the inner sum, only one term is non-zero (t can belong to only one
dyadic interval [k/2j, (k + 1)/2j)), and each ∆n(t) ∈ [0, 1]. So

LHS ≤ C
∞∑
j=J

1

2
2−j/2

√
j + 1 ∀t ∈ [0, 1],

and this tends to 0 as J → ∞, so as M → ∞. So the series
∑

λnZn∆n(t) is
absolutely and uniformly convergent, a.s. Since continuity is preserved under
uniform convergence and each ∆n(t) (so each partial sum) is continuous, Wt

is continuous in t.

2. Covariance. By absolute convergence and Fubini’s theorem,

E(Wt) = E

( ∞∑
0

λnZn∆n(t)

)
=
∑

λn∆n(t)E(Zn) =
∑

0 = 0.

So the covariance is

E(WsWt) = E

[∑
m

Zm

∫ s

0
ϕm ×

∑
n

Zn

∫ t

0
ϕn

]
=
∑
m,n

E[ZmZn]
∫ s

0
ϕm

∫ t

0
ϕn,

or as E[ZmZn] = δmn,

∑
n

∫ s

0
ϕm

∫ t

0
ϕn = min(s, t),

by the Parseval calculation above.
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