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3. Joint Distributions. Take t1, . . . , tm ∈ [0, 1]; we have to show that
(W (t1), . . . ,W (tn)) is multivariate normal, with mean vector 0 and covari-
ance matrix (min(ti, tj)). The multivariate characteristic function is
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which by independence of the Zn is
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Since each Zn is N(0, 1), the right-hand side is
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The sum in the exponent on the right is
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by the Parseval calculation, as (Hn) are a cons. Combining,
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This says that (W (t1), . . . ,W (tn)) is multinormal with mean 0 and covari-
ance function min(tj, tk) as required. This completes the construction of BM,
and the proof of the Theorem. //
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Quadratic Variation of Brownian Motion

Recall that aN(µ, σ2) distributed random variable ξ has moment-generating
function

M(t) := E (exp{tξ}) = exp
{
µt+

1

2
σ2t2

}
.

We take µ = 0 below; we can recover the general case by adding µ back on.
So, for ξ N(0, σ2) distributed,
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As the Taylor coefficients of the moment-generating function are the mo-
ments (hence the name moment-generating function!), E(ξ2) = var(ξ) = σ2,
E(ξ4) = 3σ4, so var(ξ2) = E(ξ4)− [E(ξ2)]2 = 2σ4. For W Brownian motion
on R, this gives

E(W (t)) = 0, var(W (t)) = E((W (t)2) = t, var(W (t)2) = 2t2.

In particular, for t > 0 small, this shows that the variance of W (t)2 is neg-
ligible compared with its expected value. Thus, the randomness in W (t)2 is
negligible compared to its mean for t small. This suggests that if we take a
fine enough partition P of [0, t] – a finite set of points 0 = t0 < t1 < . . . <
tn = t with grid mesh ∥P∥ := max |ti − ti−1| small enough – then writing
∆W (ti) := W (ti)−W (ti−1) and ∆ti := ti − ti−1,
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This is in fact true:
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∆ti = t in probability (max |ti − ti−1| → 0).
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This limit is called the quadratic variation of W over [0, t].
Start with the formal definitions. A partition πn of [0, t] is a finite set

of points tni such that 0 = tn0 < tn1 < . . . < tn,k(n) = t; the mesh of the
partition is |πn| := maxi(tni − tn,(i−1)), the maximal subinterval length. We
consider nested sequences (πn) of partitions (each refines its predecessors by
adding further partition points), with |πn| → 0. Call (writing ti for tni for
simplicity)

πnB :=
∑
ti∈πn

(W (ti+1)−W (ti))
2

the quadratic variation of W on (πn). The following classical result is due to
Lévy (in his book of 1948); see e.g. [P], I.3.

Theorem (Lévy). The quadratic variation of a Brownian path
over [0, t] exists and equals t, in mean square (and hence in probability):

⟨W ⟩t = t.

Proof.

πnW−t =
∑
ti∈πn

{(W (ti+i)−W (ti))
2−(ti+1−ti)} =

∑
i

{(∆iW )2−(∆it)} =
∑
i

Yi,

where since ∆iW ∼ N(0,∆it), E[(∆iW )2] = ∆ti, so the Yi have zero mean,
and are independent by independent increments of W . So
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since variance adds over independent summands.
Now as ∆iW ∼ N(0,∆it), (∆iW )/

√
∆it ∼ N(0, 1), so (∆iW )2/∆it ∼ Z2,

where Z ∼ N(0, 1). So Yi = (∆iW )2 −∆it ∼ (Z2 − 1)∆it, and
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writing c for E[(Z2 − 1)2], Z ∼ N(0, 1), a finite constant. But∑
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giving
E[(πnW − t)2] ≤ ct|π|n → 0 (|πn| → 0),
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as required. //

Remark. 1. From convergence in mean square, one can always extract an
a.s. convergent subsequence.
2. The conclusion above extends in full generality to a.s. convergence, but
an easy proof requires the reversed martingale convergence theorem, which
we omit.
3. There is an easy extension to a.s. convergence under the extra restriction∑

n |πn| < ∞, using the Borel-Cantelli lemma and Chebychev’s inequality.
4. If we consider the theorem over [0, t+dt], [0, t] and subtract, we can write
the result formally as

(dWt)
2 = dt.

This can be regarded either as a convenient piece of symbolism, or acronym,
or as the essence of Itô calculus.

Note. The quadratic variation as defined above involves the limit of the
quadratic variation over every sequence of partitions whose maximal subin-
terval length tends to zero. We stress that this is not the same as taking the
supremum of the quadratic variation over all partitions – indeed, this would
give ∞, rather than t (by the law of the iterated logarithm for Brownian
motion). This second definition – strong quadratic variation – is the appro-
priate one in some contexts, such as Lyons’ theory of rough paths, but we
shall not need it, and quadratic variation will always be defined in the first
sense here.

Suppose now we look at the ordinary variation
∑ |∆W (t)|, rather than the

quadratic variation
∑
(∆W (t))2. Then instead of

∑
(∆W (t))2 ∼ ∑

∆t = t,
we get

∑ |∆W (t)| ∼ ∑√
∆t. Now for ∆t small,

√
∆t is of a larger order of

magnitude than ∆t. So if
∑

∆t = t converges,
∑√

∆t diverges to +∞. This
gives:

Corollary (Lévy). The paths of Brownian motion are of unbounded vari-
ation – their variation is +∞ on every interval.
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