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Exponential Distribution
A random variable T is said to have an exponential distribution with rate

λ, or T = E(λ) if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

Recall E(T ) = 1/λ and var(T ) = 1/λ2. Further important properties are:
(i) Exponentially distributed random variables possess the ‘lack of memory’
property: P (T > s+ t|T > t) = P (T > s).
(ii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameters λ1, λ2, . . . , λn resp. Then min{T1, T2, . . . , Tn} is expo-
nentially distributed with rate λ1 + λ2 + . . .+ λn.
(iii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameter λ. Then Gn = T1 + T2 + . . . + Tn has a Gamma(n, λ)
distribution. That is, its density is

P (Gn = t) = λe−λt(λt)n−1/(n− 1)! for t ≥ 0.

The Poisson Process

Definition. Let t1, t2, . . . tn be independent exponential E(λ) random vari-
ables. Let Tn = t1,+ . . . + tn for n ≥ 1, T0 = 0, and define N(s) = max{n :
Tn ≤ s}.

Interpretation: Think of ti as the time between arrivals of events, then Tn is
the arrival time of the nth event and N(s) the number of arrivals by time
s. Then N(s) has a Poisson distribution with mean λs. The Poisson process
can also be characterised via

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0,
(ii) N(t+ s)−N(s) = Poisson(λt), and
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.
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The above characterization can be used to extend the definition of the
Poisson process to include time-dependent intensities. We say that {N(s), s ≥
0} is a Poisson process with rate λ(r) if
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson with mean

∫ t
s λ(r)dr, and

(iii) N(t) has independent increments.

Compound Poisson Processes
We now associate i.i.d. random variables Yi with each arrival and consider

S(t) = Y1 + . . .+ YN(t), S(t) = 0 if N(t) = 0.

Theorem. Let (Yi) be i.i.d. and N be an independent nonnegative integer
random variable, and S as above.
(i) If E(N) < ∞, then E(S) = EX(N).E(Y1).
(ii) If E(N2) < ∞, then var(S) = E(N).var(Y1) + var(N)(E(Y1))

2.
(iii) If N = N(t) is Poisson(λt), then var(S) = tλ(E(Y1))

2.

A typical application in the insurance context is a Poisson model of claim
arrival with random claim sizes.

Renewal Processes
Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .

are independent, all with law F on (0,∞. The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no
aging – that is, if a component still in use behaves as if new. The condition
for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0),

or
P (X > s+ t) = P (X > s)P (X > t).
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Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and it turns
out that these are the only solutions, subject to minimal regularity (such
as one-sided boundedness, as here – even on an interval of arbitrarily small
length!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is
called the Poisson (point) process with rate λ, Ppp(λ). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’.

7. Lévy Processes

Distributions; The Lévy-Khintchine Formula

A distribution is infinitely divisible (id) if for each n its CF ϕ is the nth
power ϕn

n of a CF ϕn. The class of infinitely divisible laws is written ID. The
form of the general infinitely-divisible distribution was studied in the 1930s
by several people (including Kolmogorov and de Finetti). The final result,
due to Lévy and Khintchine, is expressed in CF language – indeed, cannot be
expressed otherwise. The Lévy-Khintchine formula below is a static result;
its dynamic counterpart involves Lévy processes (stochastic processes with
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stationary independent increments). We return to these in IV.6 [L30] in
connection with stochastic calculus.

To describe the CF of the general i.d. law, we need three components: (i)
a real a (called the drift, or deterministic drift), (ii) a non-negative σ (called
the diffusion coefficient, or normal component, or Gaussian component), (iii)
a (positive) measure µ on R (or R \ {0}) for which∫ ∞

−∞
min(1, |x|2)µ(dx) < ∞,

that is, ∫
|x|<1

|x|2µ(dx) < ∞,
∫
|x|≥1

µ(dx) < ∞,

called the Lévy measure. The result is

Theorem (Lévy-Khintchine Formula). A function ϕ is the characteristic
function of an infinitely divisible distribution iff it has the form

ϕ(u) = exp {−Ψ(u)} (u ∈ R),

where

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(−1,1)(x)µ(dx) (L−K)

for some real a, σ ≥ 0 and Lévy measure µ.

Examples. These include the normal, Poisson, compound Poisson and Cauchy
laws (see below under ‘Stability’ for Cauchy).
The Central Limit Problem. In the CLT of II.7 [L12], we found that the
limits we can get from an iid sequence by centring and scaling (subtracting
means and dividing by variances there) were normal. The classical cen-
tral limit problem generalizes this to sums ΣkXnk from a ‘triangular array’
(1 ≤ k ≤ kn < ∞, n = 1, 2, . . .; Xnk independent as k varies for fixed n).
It turns out that the class of possible limit laws is exactly the class ID of
infinitely divisible laws in (L−K).
Self-decomposability. Recall that if, in the central limit problem, we restrict
from (two-suffix) triangular arrays (Xnk) to (one-suffix) sequences (Xn), we
come to a subclass of the infinite-divisible laws I, called the class of self-
decomposable laws SD : SD ⊂ I.
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Stability. If we further restrict to iid sequences Xn, we get the class S of sta-
ble laws: S ⊂ SD ⊂ I. To within location and scale, these are described by
two parameters, the index α ∈ (0, 2] and the skewness parameter β ∈ [−1, 1];
α = 2 gives the normal law and β = 0 gives symmetry. The (symmetric)
Cauchy law is the case α = 1, β = 0; density 1/(π(1 + x2)).
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