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Ezxponential Distribution
A random variable T is said to have an exponential distribution with rate

A or T'= E(A) if
PT<t)=1—eM for all ¢ > 0.

Recall E(T) = 1/X and var(T) = 1/A\%. Further important properties are:
(i) Exponentially distributed random variables possess the ‘lack of memory’
property: P(T' > s+ t|T >t) = P(T > s).

(i) Let Ty, T, ... T, be independent exponentially distributed random vari-
ables with parameters Aj, Ag, ..., A, resp. Then min{T},Ts,...,T,} is expo-
nentially distributed with rate Ay + Ao + ... + A,.

(iii) Let 11, T, ... T, be independent exponentially distributed random vari-
ables with parameter . Then G,, =Ty + Ty + ... + T,, has a Gamma(n, \)
distribution. That is, its density is

P(Gp =1t) = XeM\)" " /(n—1)!  for t>0.
The Poisson Process

Definition. Let ty,1s,...t, be independent exponential E(\) random vari-
ables. Let T,, = t1,+... +t, forn > 1, Tj = 0, and define N(s) = max{n :
T, <s}.

Interpretation: Think of ¢; as the time between arrivals of events, then T, is
the arrival time of the nth event and N(s) the number of arrivals by time
s. Then N(s) has a Poisson distribution with mean As. The Poisson process
can also be characterised via

Theorem. If {N(s),s > 0} is a Poisson process, then

(i) N(0) =0,

(ii) N(t +s) — N(s) = Poisson(At), and

(iii) N(¢) has independent increments.

Conversely, if (i),(ii) and (iii) hold, then {N(s),s > 0} is a Poisson process.



The above characterization can be used to extend the definition of the
Poisson process to include time-dependent intensities. We say that {N(s),s >
0} is a Poisson process with rate A(r) if
(i) N(0) =0,

(ii) N(t+ s) — N(s) is Poisson with mean [’ A(r)dr, and
(iii) N(t) has independent increments.

Compound Poisson Processes
We now associate i.i.d. random variables Y; with each arrival and consider

S(t)=Yi+ ...+ Yye,  S(t)=0if N(t) =0.

Theorem. Let (Y;) be i.i.d. and N be an independent nonnegative integer
random variable, and S as above.

(i) If E(N) < oo, then E(S) = EX(N).E(Y1).

(ii) If E(N?) < oo, then var(S) = E(N).var(Y1) +var(N)(E(Y1))2.

(iii) If N = N(t) is Poisson(At), then var(S) = tA(E(Y1))%

A typical application in the insurance context is a Poisson model of claim
arrival with random claim sizes.

Renewal Processes

Suppose we use components — light-bulbs, say — whose lifetimes X1, X, . ..
are independent, all with law F" on (0,00. The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn =YX, N; == max{k : Sy < t}.
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Then N = (N, : t > 0) is called the renewal process generated by F; it is a
counting process, counting the number of failures seen by time t.

The law F' has the lack-of-memory property iff the components show no
aging — that is, if a component still in use behaves as if new. The condition
for this is

P(X >s+tX >s)=P(X >1) (s,t>0),

" P(X >s+1)=P(X > s)P(X > 1).



Writing F'(z) := 1 — F(z) (z > 0) for the tail of F, this says that

Fls+1t)=F(s)Ft)  (s,t>0).

Obvious solutions are
F(t) =e™, Flt)=1—¢e™
for some A\ > 0 — the exponential law F()). Now

fls+1)=[f(s)f(t) (5,620

is a ‘functional equation’ — the Cauchy functional equation — and it turns
out that these are the only solutions, subject to minimal regularity (such
as one-sided boundedness, as here — even on an interval of arbitrarily small
length!).

So the exponential laws E()) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(\) is
called the Poisson (point) process with rate A, Ppp(\). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’.

7. Lévy Processes
Distributions; The Lévy-Khintchine Formula

A distribution is infinitely divisible (id) if for each n its CF ¢ is the nth
power ¢! of a CF ¢,,. The class of infinitely divisible laws is written /D. The
form of the general infinitely-divisible distribution was studied in the 1930s
by several people (including Kolmogorov and de Finetti). The final result,
due to Lévy and Khintchine, is expressed in CF language — indeed, cannot be
expressed otherwise. The Lévy-Khintchine formula below is a static result;
its dynamic counterpart involves Lévy processes (stochastic processes with
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stationary independent increments). We return to these in IV.6 [L30] in
connection with stochastic calculus.

To describe the CF of the general i.d. law, we need three components: (i)
a real a (called the drift, or deterministic drift), (ii) a non-negative o (called
the diffusion coefficient, or normal component, or Gaussian component), (iii)
a (positive) measure p on R (or R\ {0}) for which

/°° min(1, |z|2)u(dz) < oo,

that is,
/ |z)?p(dr) < oo, / p(dr) < oo,
|z|<1 |z|>1

called the Lévy measure. The result is

Theorem (Lévy-Khintchine Formula). A function ¢ is the characteristic
function of an infinitely divisible distribution iff it has the form

¢(u) =exp{-¥(u)}  (u€eR),

where
1 )
U(u) = iau + 502u2 + /(1 — " 4 iuxl_q 1y (x)p(dx) (L—K)
for some real a,0 > 0 and Lévy measure p.

Examples. These include the normal, Poisson, compound Poisson and Cauchy
laws (see below under ‘Stability’ for Cauchy).

The Central Limit Problem. In the CLT of I1.7 [L12], we found that the
limits we can get from an iid sequence by centring and scaling (subtracting
means and dividing by variances there) were normal. The classical cen-
tral limit problem generalizes this to sums Y, X, from a ‘triangular array’
(1<k<k,<oo,n=12..; X, independent as k varies for fixed n).
It turns out that the class of possible limit laws is exactly the class ID of
infinitely divisible laws in (L — K).

Self-decomposability. Recall that if, in the central limit problem, we restrict
from (two-suffix) triangular arrays (X,x) to (one-suffix) sequences (X,,), we
come to a subclass of the infinite-divisible laws I, called the class of self-
decomposable laws SD : SD C I.



Stability. If we further restrict to iid sequences X,,, we get the class S of sta-
ble laws: S C SD C I. To within location and scale, these are described by
two parameters, the index a € (0,2] and the skewness parameter 8 € [—1,1];
a = 2 gives the normal law and § = 0 gives symmetry. The (symmetric)
Cauchy law is the case a = 1, 8 = 0; density 1/(7(1 + z?)).



