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In particular, for γ(t) constant (= γ), change of measure by introducing
the Radon-Nikodym derivative exp{−γW (t)− 1

2
γ2t } corresponds to a change

of drift from c to c − γ. If (Ft) is the Brownian filtration (basically Ft =
σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual conditions) any pair
of equivalent probability measures Q ∼ P on F = FT is a Girsanov pair, i.e.

dQ

dP

∣∣∣∣∣
Ft

= L(t)

with L defined as above.
Note. The main application of the Girsanov theorem in mathematical finance
is the change of measure in the Black-Scholes model of a financial market
to obtain the risk-neutral martingale measure, under which discounted asset
prices give prices of derivatives (options etc.). The relevant mathematics
needed includes the following.

Theorem (Brownian Martingale Representation Theorem). LetM =
(M(t))t≥0 be a RCLL local martingale with respect to the Brownian filtration
(Ft). Then

M(t) = M(0) +
∫ t

0
H(s)dW (s), t ≥ 0

withH = (H(t))t≥0 a progressively measurable process such that
∫ t
0 H(s)2ds <

∞, t ≥ 0 with probability one. That is, all Brownian local martingales may
be represented as stochastic integrals with respect to Brownian motion (and
as such are continuous).

As mentioned above, the economic relevance of the representation theo-
rem is that it shows that the Black-Scholes model is complete – that is, that
every contingent claim (modelled as an appropriate random variable) can
be replicated by a dynamic trading strategy. Mathematically, the result is
purely a consequence of properties of the Brownian filtration. The desirable
mathematical properties of Brownian motion are thus seen to have hidden
within them desirable economic and financial consequences of real practical
value.

The next result, which is an example for the rich interplay between prob-
ability theory and analysis, links stochastic differential equations (SDEs)

1



with partial differential equations (PDEs). Such links between probability
and stochastic processes on the one hand and analysis and partial differen-
tial equations on the other are very important, and have been extensively
studied. Suppose we consider a stochastic differential equation,

dX(t) = µ(t,X(t))ds+ σ(t,X(t))dW (t) (t0 ≤ t ≤ T ), X(t0) = x.

For suitably well-behaved functions µ, σ, this stochastic differential equation
will have a unique solution X = (X(t) : t0 ≤ t ≤ T ). Taking existence of
a unique solution for granted for the moment, consider a smooth function
F (t,X(t)) of it. By Itô’s lemma,

dF = Ftdt+ FxdX +
1

2
Fxxd⟨X⟩,

and as d⟨X⟩ = ⟨µdt+ σdW ⟩ = σ2d⟨W ⟩ = σ2dt, this is

dF = Ftdt+Fx(µdt+ σdW )+
1

2
σ2Fxxdt = (Ft +µFx +

1

2
σ2Fxx)dt+ σFxdW.

Now suppose that F satisfies the partial differential equation

Ft + µFx +
1

2
σ2Fxx = 0

with boundary condition,
F (T, x) = h(x).

Then the above expression for dF gives

dF = σFxdW,

which can be written in stochastic-integral rather than stochastic-differential
form as

F (s,X(s)) = F (t0, X(t0)) +
∫ s

t0
σ(u,X(u))Fx(u,X(u))dW (u).

Under suitable conditions, the stochastic integral on the right is a martingale,
so has constant expectation, which must be 0 as it starts at 0. Then

F (t0, x) = E (F (s,X(s))|X(t0) = x).
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For simplicity, we restrict to the time-homogeneous case: µ(t, x) = µ(x) and
σ(t, x) = σ(x), and assume µ and σ Lipschitz, and h ∈ C2

0 (h twice continu-
ously differentiable, with compact support). Then the stochastic integral is
a martingale, and replacing t0, s by t, T we get the stochastic representation
F (t, x) = E (F (X(T ))|X(t) = x) for the solution F . Conversely, any solu-
tion F which is in C1,2 (has continuous derivatives of order one in t and two
in x) and is bounded on compact t-sets arises in this way. This gives:

Theorem (Feynman-Kac Formula. For µ(x), σ(x) Lipschitz, the solution
F = F (t, x) to the partial differential equation

Ft + µFx +
1

2
σ2Fxx = 0

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = E [h(X(T ))|X(t) = x],

where X satisfies the stochastic differential equation

dX(s) = µ(X(s))ds+ σ(X(s))dW (s) (t ≤ s ≤ T )

with initial condition X(t) = x.
The Feynman-Kac formula gives a stochastic representation to solutions

of partial differential equations (e.g., the Black-Scholes PDE).

Application. One classical application of the Feynman-Kac formula is to
Kac’s proof of Lévy’s arc-sine law for Brownian motion. Let τt be the
amount of time in [0, t] for which Brownian motion takes positive values.
Then the proportion τt/t has the arc-sine law - the law on [0, 1] with density

1/(π
√
x(1− x)) (x ∈ [0, 1).

5. Stochastic Differential Equations

Perhaps the most basic general existence theorem for SDEs is Picard’s
theorem, for an ordinary differential equation (non-linear, in general)

dx(t) = b(t, x(t))dt, x(0) = x0,

or to use its alternative and equivalent expression as an integral equation,

x(t) = x0 +
∫ t

0
b(s, x(s))ds.
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If one assumes the Lipschitz condition

|b(t, x)− b(t, y)| ≤ K|x− y|

for some constant K and all t ∈ [0, T ] for some T > 0, and boundedness
of b on compact sets, one can construct a unique solution x by the Picard
iteration

x(0)(t) := x0, x(n+1)(t) := x0 +
∫ t

0
b(s, x(n)(s))ds.

See any textbook on analysis or differential equations. (The result may also
be obtained as an application of Banach’s contraction-mapping principle in
functional analysis.)

Naturally, stochastic calculus and stochastic differential equations contain
all the complications of their non-stochastic counterparts, and more besides.
Thus by analogy with PDEs alone, we must expect study of SDEs to be
complicated by the presence of more than one concept of a solution. The
first solution concept that comes to mind is that obtained by sticking to the
non-stochastic theory, and working pathwise: take each sample path of a
stochastic process as a function, and work with that. This gives the concept
of a strong solution of a stochastic differential equation. Here we are given
the probabilistic set-up – the filtered probability space in which our SDE
arises – and work within it. The most basic results, like their non-stochastic
counterparts, assume regularity of coefficients (e.g., Lipschitz conditions),
and construct a unique solution by a stochastic version of Picard iteration.
Consider the stochastic differential equation

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), X(0) = ξ,

where b(t, x) is a d-vector of drifts, σ(t, x) is a d×r dispersion matrix, W (t) is
an r-dimensional Brownian motion, ξ is a square-integrable random d-vector
independent of W , and we work on a filtered probability space satisfying
the usual conditions on which W and ξ are both defined. Suppose that the
coefficients b, σ satisfy the following global Lipschitz and growth conditions:

∥b(t, x)− b(t, y)∥+ ∥σ(t, x)− σ(t, y)∥ ≤ K∥x− y∥,

∥b(t, x)∥2 + ∥σ(t, x)∥2 ≤ K2(1 + ∥x∥2),

for all t ≥ 0, x, y ∈ Rd, for some constant K > 0.
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Theorem. Under the above Lipschitz and growth conditions,
(i) the Picard iteration X(0)(t) := ξ,

X(n+1)(t) := ξ +
∫ t

0
b(s,X(n)(s))ds+

∫ t

0
σ(s,X(n)(s))dW (s)

converges, to X(t) say;
(ii) X(t) is the unique strong solution to the stochastic differential equation

X(0) = ξ, X(t) = ξ +
∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s);

(iii) X(t) is square-integrable, and for each T > 0 there exists a constant C,
depending only on K and T , such that X(t) satisfies the growth condition

E
(
∥X(t)∥2

)
≤ C

(
1 + E

(
∥ξ∥2

))
eCt (0 ≤ t ≤ T ).

Unfortunately, it turns out that not all SDEs have strong solutions. How-
ever, in many cases one can nevertheless solve them, by setting up a filtered
probability space for oneself, setting up an SDE of the required form on it,
and solving the SDE there. The resulting solution concept is that of a weak
solution. Naturally, weak solutions are distributional, rather than pathwise,
in nature. However, it turns out that it is the weak solution concept that is
often more appropriate for our purposes. This is particularly so in that we
will often be concerned with convergence of a sequence of (discrete) finan-
cial models to a (continuous) limit. The relevant convergence concept here
is that of weak convergence. In the continuous setting, the price dynamics
are described by a stochastic differential equation, in a discrete setting by a
stochastic difference equation. One seeks results in which weak solutions of
the one converge weakly to weak solutions of the other.
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