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Measures (continued).

Completion (continued).
Usually (but not always) it is convenient and harmless to complete all

measure spaces in this way. In this course, we shall assume completeness
unless otherwise stated. We then have no need to distinguish between the
σ-fields generated by the null sets N and by the subsets of null sets; we shall
denote either by N .

(Lebesgue)-measurable sets.
The class L of Lebesgue-measurable sets (measurable sets when the con-

text is clear) is the completion of the class B of Borel sets (L2) by the class
of null sets N .

There are Lebesgue-measurable sets that are not Borel: L \ B is non-
empty. Indeed, ‘most’ Lebesgue-measurable sets are not Borel, in the sense
of cardinality. We quote that if c is the cardinality of the continuum – the
reals, or [0, 1] – B has cardinality c, but L has cardinality 2c, which is much
bigger.

Non-measurable sets.
Recall that a (non-empty) set A is finite if it cannot be put into one-

one correspondence with a proper subset of itself. There is then a unique
natural number N such that A can be put in one-one correspondence with
{1, 2, . . . , N}; N is called the cardinality of A, N = |A| or card(A). Otherwise
A is infinite. Some infinite sets can be put in one-one correspondence with
the natural numbers. These (the ‘small’ infinite sets) are called countable (or
denumerable – though listable might be better, as one can list the elements
of A as A = {a1, a2, . . . , an, . . .}). Examples: the integers, the rationals.
The remaining infinite sets (most of them – the ‘big’ infinite sets) are not
countable, and are called uncountable (examples: the real line; any interval
of positive length).

Countability is built into Measure Theory in the property of countable
additivity, (ca) (Lecture 3). But the real line is uncountable, so we must
expect some problems with Measure Theory on the line, e.g. with Lebesgue
measure.
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Recall the Axiom of Choice, AC (Ernst ZERMELO (1871-1953), in 1904):
from every collection of non-empty sets, it is possible to choose exactly one
element from each set. This may seem obvious (it is not problematic if the
collection is finite, nor even when the collection is countably infinite), but it is
not possible to prove AC from ordinary Mathematics (technically, Zermelo-
Fraenkel set theory, ZF – Zermelo in 1908, Abraham A. FRAENKEL (1891-
1965) in the 1920s). We need it to do a number of branches of Analysis
properly (e.g. Functional Analysis and Measure Theory), so when we need
it, we assume it (usually in the form of Zorn’s Lemma – Max ZORN (1906-
1993), in 1935); ZF augmented by AC is written ZFC.

The problem with using AC, or Zorn’s Lemma, is that proofs using them
are non-constructive: they tell us something exists, but do not tell us how to
find such things explicitly. Such non-constructive existence proofs are a fact
of life in many areas of Mathematics, particularly Analysis.

Using AC, one can prove that non-(Lebesgue-)measurable subsets of the
unit interval [0, 1] exist. For A ⊂ (0, 1] and x ∈ (0, 1], write E(x) for the set
of points of E + x (defined as above), reduced modulo 1 to lie in (0, 1]. By
translation-invariance of Lebesgue measure, if A is Lebesgue-measurable, so
is A(x) and it has the same measure. Let

Z = {r1, r2, . . . , rn, . . .}
be the (countable) set of rationals in (0.1]. One can check that two sets Z(x1)
and Z(x2) are disjoint if x1 − x2 is irrational and identical if it is rational.
Let C denote the class of all disjoint sets of the form Z(x). By AC, there is
a set T containing exactly one point from each of them. For each n, let

Qn := T (rn).

These are disjoint, and have union

∞⋃

n=1

Qn = (0, 1].

If T is Lebesgue-measurable, with measure λ(T ) = |T |, then as above

|Qn| = |T (rn)| = |T |.
But if |T | = c ≥ 0, countable additivity gives

1 = |(0, 1]| = |
∞⋃

n=1

Qn| =
∞∑

n=1

|Qn| =
∞∑

1

c.
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On the left is 1, while on the right is a sum of infinitely many terms c, which
is 0 if c = 0 and +∞ if c > 0, a contradiction either way. So T cannot be
Lebesgue-measurable. //

This example of a non-measurable set is due to Giuseppe VITALI (1875-
1932) in 1905. It confirms what was suggested in L1 – that not all sets are
measurable (have length/area/volume). Indeed, ‘most’ sets do not – a typi-
cal set is non-measurable.

But by above, we cannot construct (‘get our hands on’) such a typical
set (we have to use AC, which is non-constructive). This is to be expected:
the situation regarding typical sets (of reals) is similar to but more compli-
cated than that regarding typical real numbers. ‘Nice’ reals are rational, or
algebraic (e.g.

√
2,
√

3), or computable (e.g. π: one could write a computer
programme to print out a sequence of approximations to it). But all these
classes are countable, while there are uncountably many reals. So a typical
real has none of these properties. Such non-constructive existence proofs are
made possible by the work of Georg CANTOR (1845-1918) in 1874, and later
on foundations of set theory.

‘Almost everywhere’ (a.e.).
The very name ‘null set’ for ‘set of measure 0’ suggests that what happens

on a null set is exceptional, and less important than what happens off it. We
say that a property holds almost everywhere (a.e.) if it happens except on
some exceptional null set (French, p.p., presque partout, German f.u., fast
überall).

Counting measure.
We note an example, much simpler than Lebesgue measure and in a sense

diametrically opposite to it. Take Ω as the integers (or non-negative integers,
or natural numbers/positive integers), with

µ(A) := card(A)

(or |A|), the cardinality of a set A (number of points in it). This is trivially
a measure, called counting measure. The formula above defines µ(A) for all
subsets. So the σ-field for this measure space is A = P(Ω), the power set of Ω
(class of all subsets of Ω). The measure space is purely atomic – has no non-
trivial null sets (the only set of cardinality 0 is empty!). Counting measure
is useful in Analysis, in the theory of infinite series, and in Probability and
Statistics, when dealing with discrete distributions (binomial, Poisson etc.).
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Dynkin systems and monotone classes.
A class D of subsets of Ω is called a Dynkin system (E. B. DYNKIN (1924

– )) if it is closed under complements and countable disjoint unions. For any
class G, there is a smallest Dynkin system containing it, written D(G) and
called the Dynkin system generated by G. Also

G ⊂ D(G) ⊂ σ(G);

for proof and background, we refer to [S] Ch. 5. Further,
(i) a Dynkin system is a σ-field iff it is closed under (finite) intersections;
(ii) if G is closed under finite intersections, then D(G) = σ(G).
Dynkin systems are important in that if two σ-finite measures agree on a
Dynkin system, they agree on the generated σ-algebra. Since Dynkin sys-
tems are often easier to handle than σ-algebras, this is often convenient. For
example, this is the basis of one way of proving uniqueness of Lebesgue mea-
sure.

Similarly, a class M is called a monotone class if it is closed under mono-
tone (increasing or decreasing) limits of sets (An ⊂ An+1, or An ⊃ An+1).
Again, given G there is a smallest monotone class M(G) containing it, and

G ⊂M(G) ⊂ σ(G).

Again, if two σ-finite measures agree on a monotone class, they agree on the
generated σ-algebra, and this is often convenient.

Inverse images
If we have a function f from a measure space (Ω1,A1) to a measure space

(Ω2,A2), the inverse image f−1 maps sets A ⊂ Ω2 to

f−1(A), or f−1A, := {x ∈ Ω1 : f(x) ∈ A}.

We note that inverse images respect set-theoretic operations:

f−1(Ac) = (f−1(A))c, f−1(
⋃
n

An) =
⋃
n

f−1(An), f−1(
⋂
n

An) =
⋂
n

f−1(An).

So writing f−1(A) := {f−1(A) : A ∈ A}, f(A) := {f(A) : A ∈ A}, f−1(A)
is a σ-field if A is (and clearly f(A) is a σ-field if A is).
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