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4. The Lebesgue integral.
4.1. The Riemann integral.

We begin with our first exposure to integration – the ‘Sixth Form integral’.
To find the area I under the graph of a bounded function y = f(x) between
x = a and x = b, we partition the interval [a, b] by a partition P of points xi:

a = x0 < x1 < . . . < xn = b.

The area below the curve on [xi, xi+1] is trapped between the areas of the
‘rectangle below’ and the ‘rectangle above’. Summing, the required area is
trapped between the sums of these, called the lower Riemann sum and the
upper Riemann sum. As we refine the partition by adding more points, the
lower sums increase (and are bounded above by any upper sum), so converge;
similarly, the upper sums decrease, so converge. The limits are called the
lower Riemann integral L and upper Riemann integral U ; L ≤ U . If L = U ,
we say that f is Riemann integrable (R-integrable) on [a, b] with Riemann
integral (R-integral)

∫ b

a
f, or

∫ b

a
f(x)dx, := L = U.

One can prove that, e.g,
(i) continuous functions are R-integrable;
(ii) monotone (increasing or decreasing) functions are R-integrable.
But (iii) Not all functions are R-integrable.
Example. f(x) = IQ(x), := 1 is x is rational, 0 if x is irrational, a = 0, b = 1.
As each interval [xi, xi+1] contains both rationals and irrationals, all lower
R-sums are 0 and all upper R-sums are 1. So L = 0, U = 1, and f is not
R-integrable.

But the situation is not symmetrical between rationals and irrationals.
‘Most’ reals are irrational (there are uncountably many irrationals but only
countably many rationals). So

∫ 1
0 IQ(x)dx ‘ought’ to be 1.

Question. Which functions are R-integrable?
We can answer this question, but it turns out that the answer involves

Measure Theory. And if we have to learn Measure Theory, we might as well
learn its counterpart, the integration theory that goes naturally with it. This
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is the Lebesgue integral (Lebesgue’s thesis, 1902), below. This supercedes the
R-integral: it is vastly more general, much easier to handle, and agrees with
the R-integral whenever both are defined.

We quote:
Theorem. A bounded function f is Riemann integrable on [a, b] iff f is
continuous a.e. on [a, b].

Note that this shows that the example above is as far away as possible
from being R-integrable: f = IQ is discontinuous everywhere.

It turns out that the essence of Lebesgue integration is to divide up the
y-axis – the values of f – rather than the x-axis as in the Riemann integral
above. This is neatly illustrated in the following anecdote about Lebesgue.
Lebesgue’s father was a shopkeeper, and Lebesgue prided himself on being
down-to-earth and practical. At the end of each day, his father would total
up the day’s takings. There are two ways of doing this:
1. Keep a chronological record of each transaction. The day’s total is the
sum of the takings in each transaction (this would be done automatically in
the machines in use at modern tills).
2. Go to the till. Count the number of each denomination of note (£50,
£20, £10, £5) and each denomination of coins (£2, £1, 50p, 20p, 10p, 5p,
2p, 1p). The total is the sum of the totals for each denomination.

The second way is obviously far superior, both practically and conceptu-
ally. The second corresponds to the Lebesgue integral (below), the first to
the Riemann integral (above).

4.2. Measurable functions.
If f :→ (Ω2,A2) is a map between measurable spaces (i.e., if f : Ω1 → Ω2)

and Ωi is endowed with a σ-field Ai), call f measurable (mble) if

f−1(A2) := {x : f(x) ∈ A2} ∈ A1

for all A2 ∈ A2 – inverse images of measurable sets are measurable.
Unless otherwise stated, we specialize to real-valued functions and Borel

sets:
f : (Ω,A) → (R,B(R)).

It turns out that we do not have to test all Borel sets B ∈ B(R), just those
in a family G that generates B(R). So f is mble iff

f−1((−∞, a]) := {x : f(x) ≤ a} ∈ A
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for all real a, or even all rational a, and similarly for <, ≥, > ([S], Lemma
8.1).

A mble function f is simple if it takes finitely many values (each on a
mble set):

f =
n∑

1

ciIAi
(Ai ∈ A).

Write E , or E(A), for the class of simple functions (‘e for elementary’). The
representation f =

∑
ciIAi

is called standard if the Ai are disjoint. One can
check that
(i) A measurable function is simple iff it takes only finitely many values.
(ii) If f , g are simple, so are f ± g, fg and cf for c constant.
(iii) Write the positive and negative parts of f as

f+ := max(f, 0), f− := −min(f, 0)

– so
f = f+ − f−, |f | = f+ + f−.

Then if f is simple, so is |f |.

Theorem. If f is measurable on (Ω,A), then f is a pointwise limit of simple
functions fn with |fn| ≤ |f |:

fn(x) → f(x) (n →∞).

If also f ≥ 0, one can take fn ≥ 0 with

fn(x) ↑ f(x) (n →∞).

Proof (Sketch: see [S] Th. 8.8 for details). For f ≥ 0, fix n = 1, 2, . . . and let

Ak,n := {x : k/2n ≤ f(x) < (k+1)/2n} (k < n.2n), {x : f(x) ≥ n} (k = n.2n).

Define

fn(x) :=
n.2n∑

0

k/2n.IAk,n
(x).

Then (check)
(i) |fn(x)− f(x)| ≤ 2−n if f(x) < n;
(ii) Ak,n ∈ A;
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(iii) 0 ≤ fn ≤ f and fn ↑ f .
For general f , apply the case f ≥ 0 to f+ and f− and use fn = f+

n −f−n . //

If fn is a sequence of measurable functions, then sup fn is also measurable.
For,

{x : sup
n

fn(x) > c} =
⋃{x : fn > c}.

The sets on the RHS are mble (in A) as fn is mble; as A is a σ-field, so
is their union; so the LHS is mble for each c, so supn fn is mble. Similarly,
infn fn is mble. If fn increases with n, then sup fn = lim fn, and similarly for
decreasing sequences. So monotone limits of mble functions are mble. As

limsupfn = lim
n→∞ sup

k≥n
fk,

lim sup fn is mble if the fn, and similarly for lim inf fn. In particular, if fn

are mble and fn → f , f is mble:

pointwise limits of measurable functions are measurable.

If f : (Ω1,A1) → (Ω2,A2) and g : (Ω2,A2) → (Ω3,A3) are measurable, the
composite function g ◦ f = g(f(.)) : (Ω1,A1) → (Ω3,A3) is measurable. For,

(g ◦ f)−1(A) = f−1(g−1(A));

for A ∈ A3, g−1(A) ∈ A2 as g is measurable, so f−1(g−1(A)) ∈ Ω1 as f is
measurable:

compositions of measurable functions are measurable.

Image measures.
If f : (Ω1,A1) → (Ω2,A2) is measurable and µ is a measure on (Ω1,A1),

one can check that

µ′(A) := µ(f−1(A)), A ∈ A

defines a measure on (Ω2,A2). It is called the image measure of µ under f ,
written f(µ) or µ ◦ f−1:

f(µ)(A) := µ(f−1(A)).
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