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Absolute continuity.

Theorem. If f ∈ L(µ),

∫

A
fdµ → 0 (µ(A) → 0).

Proof. Write fn = f if |f | ≤ n, 0 otherwise. Then |fn| ↑ |f |. So
∫ |fn|dµ ↑∫

fdµ: for all ε > 0 there exists N with

∫
|f |dµ <

∫
|fn|dµ + ε/2 (n ≥ N).

Then for A ∈ A with µ(A) < ε/(2N),

|
∫

A
fdµ| ≤

∫

A
|f |dµ =

∫

A
|fN |dµ+

∫

A
(|f |−|fN)dµ < N.ε/(2N)+

∫

Ω
(|f |−|fN |)dµ

< ε/2 + ε/2 = ε. //

For f non-negative mble, consider

ν(A) :=
∫

A
fdµ (∗)

as a set-function for A ∈ A. If An ∈ A are disjoint with union A,

I∪n
1 Ai

=
n∑

1

IAi
↑

∞∑

1

IAi
= I∪∞1 Ai

= IA.

So by monotone convergence,

ν(∪n
1Ai) ↑ ν(A).

So the non-negative set-function ν is σ-additive, that is, ν is a measure. By
the theorem above,
(i) ν(A) → 0 as µ(A) → 0.
Also
(ii)ν(A) = 0 if µ(A) = 0,
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as the integral of anything over a null set is 0. Either property (i) or (ii) can
be called absolute continuity of ν with respect to µ, written

ν << µ.

So if ν =
∫

fdµ as in (∗), then ν is absolutely continuous (ac) w.r.t. µ.
The converse is false in general, but true for σ-finite measures, which are

all we need. This is the content of the Radon-Nikodym theorem (Johann
RADON (1887-1956) in 1913 in Euclidean space, Otto NIKODYM (1887-
1974) in 1930 in the general case). We quote this result (for proof, see e.g.
[S] Ch. 19); the Radon-Nikodym theorem is related to (is in a sense equiva-
lent to) the martingale convergence theorem, which we discuss later.

When ν << µ, the function f in (∗) is called the Radon-Nikodym deriva-
tive (RN derivative) of ν wrt µ; we then write

f = dν/dµ.

Then (∗) becomes

ν(A) =
∫

A

dν

dµ
dµ,

which we may write symbolically as

dν =
dν

dµ
.dµ,

reminiscent of the Chain Rule in ordinary Differential Calculus.
If ν << µ and also µ << ν, we call µ, ν equivalent. Then

(i) they have the same null sets;
(ii) both dν/dµ and dµ/dν exist, and

dν/dµ = 1/(dµ/dν).

Again, note the similarity with ordinary Differential Calculus.
Note. 1. Passing from µ to ν is a change of measure. The key result for
change of measure in Probability Theory is Girsanov’s theorem. It plays a
crucial role in Mathematical Finance, where the essence of the subject can
be reduced to two steps:
(i) discount everything (wrt the risk-free rate of interest) – i.e. pass from
prices in nominal terms to prices in real terms;
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(ii) take conditional expectations (see later!) under the equivalent martin-
gale measure, EMM (the probability measure equivalent to the original one
under which discounted asset prices become martingales – see later!) See
[BK], Preface and text, for details.
2. In Probability and Statistics, we typically encounter two distinct kinds of
distribution:
(i) discrete distributions, such as the Bernoulli, binomial or Poisson distribu-
tions, and
(ii) distributions with a density, such as the Normal (Gaussian), exponential,
chi-square (χ2) and (Fisher) F distributions.
In case (ii), the density is the RN derivative of the probability measure wrt
Lebesgue measure (φ(x) = exp{−x2/2}/√2π for the standard normal dis-
tribution Φ = N(0, 1), e−x (x ≥ 0) for the exponential distribution, etc.)
In case (i), the probability mass function (e−λλk/k! (k = 0, 1, 2, . . . for the
Poisson distribution P (λ) with parameter λ, etc.) is the RN derivative of
the probability measure wrt counting measure. Measure Theory gives us a
framework in which we can deal with both these cases together, rather than
having to do everything twice, once with sums (discrete case) and once with
integrals (density case).

Differentiation and integration; Lebesgue decomposition.
Recall the Fundamental Theorem of Calculus (FTC), that says that dif-

ferentiation and integration are inverse processes (there are various ways in
which this can be made precise). Now that we have a new definition of inte-
gration, we need a new version of FTC, as follows.

Theorem (Lebesgue’s differentiation theorem, 1904). If f ∈ L1 and

F (x) :=
∫ x

−∞
f(u)du,

then F is differentiable a.e. and

F ′(x) = f(x) a.e.

The set-function corresponding to F , the signed measure

µ(A) :=
∫

A
f(x)dx,

is absolutely continuous wrt Lebesgue measure λ, with RN-derivative f .
Let F be a probability distribution function; then F is non-decreasing,
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right-continuous and bounded (between 0 and 1). Such an F can have at
most countably many discontinuities, each of which is a jump (at most 1
of jump ≥ 1; at most 2 of jump ≥ 2, ..., at most n with jump ≥ n, etc.).
These are the points xn at which the LS measure µF corresponding to F has
positive mass mn := F (xn)− F (xn−). Then

µF,j(A) :=
∑

n:xn∈A

mn

(‘j for jump’) is a measure with countable support (the set {xn} of atoms),
the jump component of F . There may be an absolutely continuous com-
ponent Fac(x) =

∫ x
−∞ f(u)du with RN derivative f say (f ≥ 0 as F is

non-decreasing). There may be a third component Fs, which is continuous
and singular (no jumps; grows only on a Lebesgue-null set). According to
Lebesgue’s decomposition theorem, F has a unique decomposition into these
three components:

F = Fac + Fj + Fs.

In this course, Fs will be absent, and usually only one of Fac, Fj will be
present – the density case (e.g. normal) and discrete case (e.g. Poisson)
above.

Transformation of integrals.
If T : (Ω1,A1) → (Ω2,A2) is measurable (‘T for transformation’), and

f = IA for A ∈ A2,

∫
fdT (µ) = T (µ)(A) = µ(T−1(A)) =

∫
IT−1(A)dµ =

∫
IA(T (x))dµ(x)

=
∫

f(T (x))dµ(x) =
∫

f(T )dµ.

The formula ∫
fdT (µ) =

∫
f(T )dµ

extends from f = IA to simple functions f by linearity. It then extends
further to general integrable functions f by approximation (increasing limits
of simple functions in the non-negative case, and by considering positive and
negative parts separately in the general case), as in L6. For details, see [S]
Ch. 14. We will use this formula in Ch. II below for expectations.
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