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Properties of the integral (continued).

The next result, Fatou’s lemma, is due to Pierre FATOU (1878-1929) in
1906.

Theorem (Fatou’s lemma). If fn are measurable and bounded below by
an integrable function g, then∫

lim infn→∞fndµ ≤ lim inf
n→∞

∫
fndµ.

Proof. By passing to fn−g, which is measurable and non-negative, and using
linearity of the integral, it suffices to consider the case when fn ≥ 0. Put

gn := inf
k≥n

fk;

then gn is an increasing sequence, and

lim
n→∞

gn = lim inf
n→∞

fn.

Now fn ≥ gn. Take lim inf
∫
and use that

∫
gndµ decreases (order property

of the integral): the lim inf on the right is a lim, so

lim inf
∫

fndµ ≥ lim
∫

gndµ.

By monotone convergence, as gn is increasing,

lim
∫

gndµ =
∫

lim gndµ =
∫

lim inf fndµ.

Combining, the result follows. //

Of course, applying the result to −fn gives the alternative form: for func-
tions bounded above by an integrable function,

∫
lim sup ≥ lim sup

∫
.

Theorem (Lebesgue’s dominated convergence theorem, 1910 – dom-
inated convergence). If fn are measurable, fn → f and |fn| ≤ g with g
µ-integrable, then ∫

fndµ →
∫
fdµ.
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Proof. First suppose fn ≥ 0 and fn → 0. By Fatou’s lemma,

0 =
∫
0dµ =

∫
lim inf fndµ ≤ lim inf

∫
fndµ ≤ lim sup

∫
fndµ,

while by the ‘limsup’ form,

lim sup
∫
fndµ ≤

∫
lim sup fndµ =

∫
0.dµ = 0.

Combining these two (0 = .. ≤ ... ≤= 0), each must be an equality. So
lim

∫
fndµ exists and is 0.

In the general case, as |fn| ≤ g and fn → f , |f | ≤ g; as g is µ-integrable,
this gives f µ-integrable (L6, property (viii)). Put gn := |fn − f |. Then
0 ≤ gn ≤ 2g, 2g is µ-integrable, gn is measurable and tends to 0. So

|
∫

fndµ−
∫

fdµ| ≤
∫

|fn − f |dµ → 0,

by the first part applied to gn = |fn − f |. So
∫
fndµ →

∫
fdµ. //

Note. 1. These convergence results on interchanging limit and integral –
monotone and dominated convergence, and Fatou’s lemma – are very pow-
erful and useful, and form one of the main advantages of the Lebesgue (or
more generally, measure-theoretic) integral. By contrast, such convergence
results are known for the Riemann integral, but under much more stringent
conditions. We quote: if fn are R-integrable and fn → f uniformly on [a, b],
then ∫ b

a
fn(x)dx →

∫ b

a
f(x)dx.

This condition of uniform convergence is too strong for this result to be much
use in Real Analysis, where the Lebesgue integral is preferred because of the
results above (L7).

By contrast, in Complex Analysis, the principal convergence result is that
if fn are holomorphic in a domain D in the complex plane, and fn → f uni-
formly on compact subsets K of D, then
(i) f is holomorphic on D (this follows from Morera’s theorem);
(ii) the derivatives converge: f (k)

n → f (k) uniformly on compact subsets of D
(this follows from the Cauchy integral formulae for derivatives).
The Riemann integral is adequate for most purposes in Complex Analysis.
2. We proved the three results in the usual [chronological] order – ”M, F,
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D”. But they can be proved in the order ”D, M, F”, so are equivalent. See
V. I. BOGACHEV, Foundations of measure theory, Vol. 1, 2, Springer, 2005.

6. Stieltjes integrals.
In both the Riemann integral and the Lebesgue integral, intervals (a, b]

played a major role, and we used that they have length b − a. The ”dx” in∫
f(x)dx (Riemann or Lebesgue) comes from this. It turns out that we need

to generalize this, and we can do so easily by the methods above.
Suppose that F is a non-decreasing function. Then F can have at worst

jump discontinuities; we take F to be right-continuous at any jump points.
We replace the length b−a of (a, b] by F (b)−F (a). This gives a set-function
µF , defined by

µF ((a, b]) := F (b)− F (a).

If in the Riemann integral we replace lower R-sums
∑

mi(xi+1 − xi) by∑
mi(F (xi+1) − F (xi)), and similarly for upper R-sums, we obtain an ex-

tension of the R-integral, called the Riemann-Stieltjes integral or RS-integral
(Thomas STIELTJES (1856- 1894) in 1894/5). It is written

∫ b
a f(x)dF (x);

here f is called the integrand, F the integrator. Care is needed if both in-
tegrand and integrator can have common points of discontinuity. We shall
need to allow F to have jumps; we restrict to f continuous accordingly.

If in the definition of the measure-theoretic integral we take µ to be µF

on half-open intervals (a, b] as above, and then construct the integral as with
the Lebesgue integral but with µF ((a, b]) := F (b) − F (a) in place of b − a,
we obtain the Lebesgue-Stieltjes integral or LS-integral.

Such Stieltjes integrals are important in Probability Theory. As we shall
see in Ch. II, a random variable (rv) (X say) has a (probability) distribution
function, F (= FX). Then the LS-integral

∫
g(x)dF (x) has the interpretation

of an expectation, Eg(X) of the function g(X) of the rv X.
Signed measures.

We now drop the requirement that our set-functions be non-negative.
While length/area/volume, probability and (gravitational) mass are all non-
negative, electrostatic charge can have either sign. A signed measure is a
countably additive set function (not necessarily non-negative). The measure
theory of signed measures is fairly simple: a signed measure µ can be written
uniquely as

µ = µ+ − µ−,

where µ± are measures, with disjoint supports (the support of a measure is
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the largest set whose complement is null). This is the Hahn-Jordan theorem
Hans HAHN (1879-1934) in 1948, posth., Camille JORDAN (1838-1922) in
1881).

We can extend the LS integral from non-decreasing integrands F to

F = F1 − F2

that are the difference of two non-decreasing functions, in the obvious way:∫
fdF :=

∫
fdF1 −

∫
fdF2

(both terms on the right must be finite – we must avoid ‘∞−∞’). This gives
the LS integral with integrator the F , or the corresponding signed measure
(cf. the Hahn-Jordan theorem).

So suitable integrators are differences of monotone functions. But how
do we recognize them? For an interval [a, b], let P be a partition:

a = x0 < x1 < . . . < xn = b.

For a function F , the variation of F over the partition P is

var(F,P) :=
∑

|F (xi+1 − F (xi)|.
Call F of finite variation (FV) on [a, b] if

var[a,b]F := sup{var(F,P)} < ∞,

where P varies over all partitions. Of course, monotone functions are of
FV: if F is monotone, var(F,P) = |F (b)− F (a)|, so taking the sup over P ,
var[a,b]F = |F (b)− F (a)|. Of course also, we need to restrict to finite inter-
vals (or compact sets): the case F (x) ≡ x generating Lebesgue measure is
the prototype, but x, though of FV on finite intervals, has infinite variation
over the real line. We quote:

Theorem (Jordan, 1881). The following are equivalent:
(i) F is the difference of two monotone functions;
(ii) F is of finite variation (FV) on intervals [a, b].

Later we will encounter stochastic integrals
∫
hdX, where both the inte-

grand h and the integrator X are random (stochastic processes). These will
be of two types: X of FV, when we can use LS-integrals as above, and X
not FV (e.g.: Brownian motion, Ch. IV) when we will need an entirely new
kind of integral, the Itô integral.
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