
spexamsolns.tex

STOCHASTIC PROCESSES: MOCK EXAMINATION
SOLUTIONS, 12.12.2010

Q1. Lebesgue measure λ is defined on the line by λ((a, b]) := b− a. This is
translation-invariant: λ((a+h, b+h]) = (b+h)− (a+h) = b− a = λ((a, b]).
Similarly in higher dimensions, λ is defined first on rectangles, cuboids etc.;
the measure of each is the product of the measures of each side; each of these
is translation-invariant by above; so Lebesgue measure in higher dimensions is
translation-invariant, on the class of cuboids on which it is thus defined. This
class forms a field; by Carathéodory’s Extension Theorem Lebesgue measure
extends uniquely to the generated σ-field, and translation-invariance goes
over by approximation. It then extends to the σ-field of Lebesgue-measurable
sets by completion, and again translation-invariance persists. Thus Lebesgue
measure is translation-invariant, as required.

For rotation-invariance in the plane: Lebesgue measure could be defined
on regions in polar coordinates of the form r1 < r ≤ r2, θ1 < θ ≤ θ2
as π[r22 − r21].(θ2 − θ1)/2π = 1

2
(r2 + r1)(r2 − r1)(θ2 − θ1) (or in differential

form, by dA = rdr.dθ), which is rotation-invariant as it depends only on the
difference of the angle variables. Lebesgue measure so defined agrees with
Lebesgue measure defined as above, by the uniqueness of the Carathéodory
extension procedure in the σ-finite case, as here (Euclidean space is σ-finite).
This extends to three dimensions using a similar argument on each of the
Euler angles in spherical polar coordinates, and similarly to d dimensions.

Combining, Lebesgue measure is invariant under both translations and
rotations. But these generate the group of Euclidean motions, so Lebesgue
measure is also invariant under the action of this group.

For the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1: the volume V is the result of
integrating the element of area dV = dxdydz over the region x2/a2+ y2/b2+
z2/c2 ≤ 1. The sphere of radius a has volume V = 3πa3/3 (L1). One may re-
duce to this case by the linear transformation (x, y, x) 7→ (x, yb/a, zc/a). The
image of the ellipsoid is now the sphere of radius a, with volume as above. The
effect on the element of volume is dV = dxdydz 7→ dx.(dy.b/a).(dz.c/a) =
dxdydz.bc/a2. This maps the volume V of the ellipsoid to Vsphere.bc/a

2 =
(4πa3/3).bc/a2 = 4πabc/3. So V = 4πabc/3.
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Q2 . Lebesgue’s dominated convergence theorem states that for measurable
functions fn → f a.e. (w.r.t. a measure µ), with fn dominated by a µ-
integrable function g, then ∫

fndµ →
∫
fdµ.

To prove the conditional form of dominated convergence: choose A ∈ A.
By dominated convergence applied to XnIA,∫

A
XndP →

∫
A
XdP.

By definition of conditional expectation, this says∫
A
E[Xn|A]dP →

∫
A
E[X|A]dP.

As this holds for all A ∈ A,

E[Xn|A] → E[X|A]. //

To prove Scheffé’s Lemma:

|
∫
B
fn −

∫
B
f | = |

∫
B
(fn − f)| ≤

∫
B
|fn − f |.

Taking sups over B proves the required inequality. Next, with a ∧ b :=
min(a, b),

|fn − f | = fn + f − 2fn ∧ f.

Integrate:
∫
fn = 1,

∫
f = 1 as these are densities. As 0 ≤ fn ∧ f ≤ f ,

integrable, dominated convergence gives∫
fn ∧ f →

∫
f = 1.

So the integral of RHS → 1+1-2 = 0. So the integral of LHS → 0 also:∫
|fn − f | → 0. //
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Q3. The tail σ-field T of a process X = (Xn) is the sub-σ-field of σ(X)
invariant under changes to finitely many of the Xn.

Write σn(X) := σ(X1, . . . , Xn). Then σ(X) is the σ-field generated by the
increasing family σn(X) of σ-fields. The union ∪nσn(X) forms a field, which
generates the σ-field σ(X). So (from the Carathéodory extension procedure,
given), for A ∈ σ(X) there are An ∈ σn(X) with

P (A∆An) → 0, i.e. P (A \ An) → 0, P (An \ A) → 0

(∆ is the symmetric difference). So (writing ‘o(1)’ for ‘term tending to 0’)

P (An) = P (An ∩ A) + P (An \ A) = P (An ∩ A) + o(1),

and similarly

P (A) = P (A ∩ An) + P (A \ An) = P (An ∩ A) + o(1) = P (An) + o(1).

If A ∈ T is a tail event, A depends only on random variables Xk suffi-
ciently far along (i.e. for k sufficiently large). As the Xn are independent, A
is independent of each σn(X). So

P (A ∩ An) = P (A).P (An).

Let n → ∞: by above, we get

P (A) = P (A).P (A) = P (A)2.

So x = P (A) satisfies the equation x = x2, i.e. x2 − x = x(x− 1) = 0, whose
roots are x = 0 or 1. So P (A) = 0 or 1: the probability of a tail event of
a sequence of independent random variables is 0 or 1, proving Kolmogorov’s
Zero-One Law. //

If the events An are independent, their indicators IAn are independent
random variables. The event

A := limsupAn := ∩n ∪∞
m=n Am = {An i.o.}

that infinitely many An occur is a tail event. By Kolmogorov’s Zero-One
Law above, P (A) = 0 or 1. By the Borel-Cantelli Lemmas, P (A) = 0 or 1
according as

∑
P (An) converges or diverges.
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Q4. We complete the square. We have the algebraic identity

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ

(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2
.

Then (taking the terms free of y out through the y-integral)

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

∫ ∞

−∞

1

σ2

√
2π

√
1− ρ2

exp

(
−1

2
(y − cx)

2

σ2
2(1− ρ2)

)
dy,

(∗)
where

cx := µ2 + ρ
σ2

σ1

(x− µ1).

The integral is 1 (‘normal density’). So f1(x) = exp(−1
2
(x− µ1)

2/σ2
1)/σ1

√
2π,

which integrates to 1 (‘normal density’). So f(x, y) is a joint density func-
tion, with marginal density functions f1(x), f2(y). So f(x, y) = fX,Y (x, y),
f1(x) = fX(x), f2(y) = fY (y).

Next, X,Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, f1 = fX is

N(µ1, σ
2
1) density above, and similarly for Y . This also gives EX = µ1, EY =

µ2, varX = σ2
1, varY = σ2

2.
The conditional law of y given X = x is N(µ2+ρσ2

σ1
(x−µ1), σ2

2(1−ρ2)).
For, by completing the square (or, return to (*) with

∫
and dy deleted):

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

.
exp(−1

2
(y − cx)

2/(σ2
2(1− ρ2)))

σ2

√
2π

√
1− ρ2

.

The first factor is f1(x). So, fY |X(y|x) = f(x, y)/f1(x) is the second factor:

fY |X(y|x) =
1√

2πσ2

√
1− ρ2

exp
( −(y − cx)

2

2σ2
2(1− ρ2)

)
,

where cx is the linear function of x given below (*).
So var(Y |X) = σ2

2(1− ρ2), giving E[var(Y |X)] = σ2
2(1− ρ2), and

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), var(Y |X = x) = σ2
2(1− ρ2) :

E[E(Y |X)] = E[µ2+ρ
σ2

σ1

(X−µ1)] = µ2 = EY, var[E(Y |X)] = (ρσ2/σ1)
2.σ2

1 = ρ2σ2
2.

Combining, this verifies the Conditional Mean Formula and the Conditional
Variance Formula here, and shows that ρ2 is the proportion of the variability
of Y accounted for by knowledge of X.
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Q5.

ϕ(s) =
1√
2π

.
∫ ∞

0
exp(−sx− 1

2x
).

dx

x3/2
.

Differentiate under the integral sign (as we may, the integrand being mono-
tone in s – we quote this):

ϕ′(s) = − 1√
2π

.
∫ ∞

0
exp(−sx− 1

2x
).
dx√
x
.

The change of variable suggested interchanges the two terms in the exponen-
tial. It reverses the limits, and (check)

dx√
x
= − 1√

2s
.
du

u3/2
.

This gives

ϕ′(s) = − 1√
2s

.ϕ(s) :
ϕ′(s)

ϕ(s)
= − 1√

2s
.

Integrate: log ϕ(s) = −
√
2s + c, ϕ(s) = ce−

√
2s. But ϕ(0) =

∫
f = 1, so

ϕ(s) = e−
√
2s. //

Adding independent random variables multiplies Laplace transforms (as
with CFs – from the Multiplication Theorem), so X1 + . . .+Xn has Laplace

transform [ϕ(s)]n = e−n
√
2s. Replacing s by s/n2, (X1 + . . . + Xn)/n

2 has

Laplace transform ϕ(s) = e−
√
2s, the Laplace transform of X. So (X1+ . . .+

Xn)/n
2 has the same distribution as X, as required.

This does not contradict the Strong Law of Large Numbers, as X has
infinite mean. It does not contradict the Central Limit Theorem, as X has
infinite variance.

The argument above shows that this law is infinitely divisible. So it
corresponds to a Lévy process, X = (Xt), and as the law of each Xt is
concentrated on the positive half-line, the paths of X are increasing, that
is, X is a subordinator. So we may use the Laplace rather than the Fourier
form of the Laplace exponent: E exp{−sXt} = exp{−t

√
2s}. Then

E exp{−sX(ct)} = exp{−ct
√
2s} = exp{−t

√
2c2s} = E exp{−tc2Xt} :

Xct =d c2Xt. So Xt =d Xct/c
2: X is strictly stable with index 1/2. So X is

the stable subordinator with index 1/2 (X is also the first-passage process
of Brownian motion).
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Q6. A function ϕ is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) ∀λ ∈ [0, 1], x, y.

Jensen’s inequality states that

ϕ(E[X]) ≤ E[ϕ(X)]

for convex ϕ and random variables X with X, ϕ(X) both integrable. The
conditional Jensen inequality states that for A a σ-field, ϕ, X as above,

ϕ(E[X|A]) ≤ E[ϕ(X)|A].

(i) For s < t, Ms = E[Mt|Fs] as M is a martingale. So by the conditional
Jensen inequality,

ϕ(Ms) = ϕ(E[Mt|Fs]) ≤ E[ϕ(Mt)|Fs],

which says that ϕ(M) is a submartingale.
(ii) If M is a submartingale, Ms ≤ E[Mt|Fs]. As ϕ is non-decreasing on the
range of M ,

ϕ(Ms) ≤ ϕ(E[Mt|Fs]),

≤ E[ϕ(Mt)|Fs]

by the conditional Jensen inequality again, and again ϕ(M) is a submartin-
gale.
(iii) As Brownian motion B is a martingale (lectures), and x2 is convex (its
second derivative is 1 ≥ 0), B2 is a submartingale by (i).
(iv) As B2

t − t is a martingale (which you may quote here as it is not asked
– but is easy to prove, as in lectures)

B2
t = [B2

t − t] + t (submg = mg + incr)

is the Doob-Meyer decomposition of B2
t . The increasing process here is t,

which is thus the quadratic variation of Brownian motion B.

N. H. Bingham
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