spprob8.tex

Problems 8. 3.12.2010

Q1. (i) If $M = (M_t)$ is a mg, and ϕ is a convex function such that each $\phi(M_t)$ is integrable, show that $\phi(M)$ is a submg.

(ii) If in (i) M is a submg, and ϕ is also non-decreasing on the range of M, show that again $\phi(M)$ is a submg.

Q2. (i) Deduce from Q1 that for $B = (B_t)$ BM, $B^2 = (B_t^2)$ is a submg. Find the increasing process in its Doob-Meyer decomposition. Deduce that BM has quadratic variation t.

(ii) Show that for $p \ge 1 |B|^p$ is a submg.

(iii) Show that B^+ is a submg.

Q3. Martingale transforms (Burkholder). If $X = (X_n)$ is a mg [submg, supermg], $C = (C_n)$ is predictable, write

$$(C \bullet X)_n := \sum_{1}^{n} C_k(X_k - X_{k-1})$$

 $(C \bullet N \text{ is the martingale [submg, supermg] transform of X by C})$. Show that (i) if C is bounded and non-negative and X is a submg [supermg], $C \bullet X$ is a submg [supermg] null at 0;

(ii) if C is bounded and X is a mg, $C \bullet X$ is a mg null at 0.

Upcrossings. For a process X and interval [a, b], define stopping times σ_k, τ_k by $\sigma_1 := \min\{n : X_n \leq a\}, \tau_1 := \min\{n > \sigma_1 : X_n \geq b\}$, and inductively $\sigma_k := \min\{n > \tau_{k-1} : X_n \leq a\}, \tau_k := \min\{n > \sigma_k : X_n \geq b\}$. Call $[\sigma_k, \tau_k]$ an upcrossing of [a, b] by X, and write $U_n := U_n([a, b], X)$ for the number of such upcrossings by time n.

Q4. Upcrossing Inequality (Doob). If X is a submg, show that

$$EU_n([a,b],X) \le E[(X_n - a)^+]/(b - a).$$

Q5. Martingale Convergence Theorem (Doob). Show that an L_1 -bounded submy $X = (X_n)$ (i.e. $E|X_n| \leq K$ for some K and all n) is a.s. convergent.

Q6. (i) Show that a non-negative supermy is [a.s.] convergent.

(ii) Give an example of a non-convergent submg [so L_1 -boundedness, or some such condition, is needed in Q5].

NHB