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1. Being either 1 on the set or 0 off it, an indicator is determined by its
parity (odd = 1, even = 0), or its value modulo 2.

IA∆B = IA + IB − 2IA ∩B = IA + IB = IB∆A (mod 2).

For, on A \ B and B \ A both sides are 1; both sides are 0 on Ac ∩ Bc and
0 and 1+1-2 = 0 on A ∩ B. Since addition (hence also addition mod 2) is
associative, ∆ is associative:

IA∆(B∆C) = IA + IB∆C = IA + IB + IC = I(A∆B)∆C mod 2,

so A∆(B∆C) = (A∆B)∆C. So we may write either side as A∆B∆C omit-
ting brackets, and similarly for A1∆ . . .∆An.

Assume by induction thatA1∆ . . .∆An = {x : x is in an odd number of the sets}.
Then A1∆ . . .∆An+1 = (A1∆ . . .∆An)∆An+1 is the set of points in an even
number of the first n sets and the last, or an odd number of the first n and
not the last, i.e. is the set of points in an odd number of the first n+ 1 sets,
completing the induction.

Since I∅ = 0, A∆∅ = ∅∆A = A, for all A. Combining: the set P(Ω) of
all subsets of Ω is an additive abelian group under ∆, with ∅ as 0 element.

Since IA.IB = IA∩B, P(Ω) is an associative system with ∩ as multiplica-
tion. Since A ∩ Ω = A = Ω ∩ A, Ω serves as identity, 1. Since

IA∩(B∆C) = IA.IB∩C = IA(IB + IC) = IA∩B + IA∩C = I(A∩B)∆(A∩C) (mod 2),

A ∩ (B∆C) = (A ∩B)∆(A ∩ C),

showing that ∩ as multiplication is distributive over ∆ as addition. Combin-
ing, P(Ω) is a ring under these operations (called the Boolean ring), with ∅
as 0 and Ω as 1. Since A∆A = ∅, each set A is its own additive inverse.
Note. 1. A ring in Algebra is a set with two operations, called addition and
multiplication, which is (a) an abelian group under addition, (b) an asso-
ciative system (not necessarily commutative) under multiplication, and the
distributive law holds. Prototypes: integers; polynomials; [square] matrices
(non-commutative).
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2. Boolean algebra (below) is important in Mathematical Logic and Com-
puter Science [membership of a set corresponds to truth of a proposition;
recall the use of Boolean variables in do-loops in computer programming]. A
Boolean algebra is a ring as above, with multiplication idempotent: a2 = a
for every a (this automatically holds in the above context, as A ∩A = A for
every A). Stone’s Representation Theorem (Marshall H. STONE (1903-89)
in 1936) states that every Boolean algebra arises as a ring of sets as above
(this can be used as a weaker form of the Axiom of Choice).

Q2. (i) When lim supxn is finite, c say, it is characterised by the following
property: for each ϵ > 0,
(a) xn ≤ c+ ϵ for all large enough n; (b) xn ≥ c− ϵ for infinitely many n
(see e.g. W. Rudin, Principles of mathematical analysis, 3.17). Applied to
indicator functions, which take values 0 and 1 only, the first is no restriction,
so can be ignored; the second is
(b’) c(ω) = 1 for infinitely many n.
(ii) Ilim supAn is 1 iff infinitely many of theAn occur, and so by (i) is lim sup IAn ,
proving the first part.
Ilim inf An is 1 iff all the An occur from some point on, and so is lim inf IAn ,
proving the second part.
Note. 1. In Real Analysis, lim sup and lim inf, together with O and o, are
powerful tools enabling one to strip proofs of superfluous ϵs. One should
never use an ϵ except when it is genuinely needed – which is usually in the
hard proofs.
(ii) We will meet lim supAn later in connection with the Borel-Cantelli lem-
mas [II.8, L13].

Q3. If the sets are {An}∞n=1 and An = {xn,k}∞k=1, display the pooint xn,k at
the point (n, k) in the first quadrant. By ‘diagonal sweep’, enumerate this
double sequence in a single sequence (x1,1; x2,1, x1,2; x3,1, x2,2, x1,3; . . .). This
shows that ∪An is countable [this proof is due to Cantor, who used it to show
that the rationals are countable].

Q4. If An are µ-null,

µ(∪∞
1 An) ≤

∞∑
1

µ(An) =
∞∑
1

0 = 0.

NHB
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