
STOCHASTIC PROCESSES: EXAMINATION SOLUTIONS
2011/12

Q1. Theorem (Fatou’s lemma). If fn are measurable and bounded below
by an integrable function g, then∫

lim infn→∞fndµ ≤ lim inf
n→∞

∫
fndµ.

Of course, applying the result to −fn gives the alternative form: for func-
tions bounded above by an integrable function,

∫
lim sup ≥ lim sup

∫
. [2]

Theorem (Dominated convergence). If fn are measurable, fn → f and
|fn| ≤ g with g µ-integrable, then∫

fndµ →
∫
fdµ. [2]

Proof. First suppose fn ≥ 0 and fn → 0. By Fatou’s lemma (both forms),

0 =
∫
0dµ =

∫
lim inf fndµ ≤ lim inf

∫
fndµ ≤ lim sup

∫
fndµ,

lim sup
∫
fndµ ≤

∫
lim sup fndµ =

∫
0.dµ = 0.

Combining these two (0 = .. ≤ ... ≤= 0), each must be an equality. So
lim

∫
fndµ exists and is 0.

In the general case, as |fn| ≤ g and fn → f , |f | ≤ g; as g is µ-integrable,
this gives f µ-integrable (L6, property (viii)). Put gn := |fn − f |. Then
0 ≤ gn ≤ 2g, 2g is µ-integrable, gn is measurable and tends to 0. So

|
∫

fndµ−
∫

fdµ| ≤
∫

|fn − f |dµ → 0,

by the first part applied to gn = |fn − f |. So
∫
fndµ →

∫
fdµ. // [10]

From 1 − x ≤ e−x (x > 0), (1 − x
n
)n ≤ e−x, and → e−x as n → ∞. As

also I[0,n](x) ≤ 1 and → 1, I[0,n](x)(1 − x
n
)nxα−1 ≤ e−xxα−1 and → e−xxα−1.

So by dominated convergence,∫ n

0
(1− x

n
)nxα−1dx → Γ(α) :=

∫ ∞

0
e−xxα−1dx (n → ∞). [6]

Bookwork seen in lectures; problem unseen.

1



Q2 (i) (Variance of sum for Pairwise Independence).
For Xn pairwise independent, put Sn :=

∑n
1 Xi, S :=

∑∞
1 Xi, mn :=

E[Sn] =
∑n

1 E[Xi].

var(Sn) = E[(Sn −mn)
2] = E[(

n∑
i=1

(Xi − E[Xi])(
n∑

j=1

(Xj − E[Xj])]

= E[
∑
i

∑
j

(. . .)(. . .)] =
∑
i

E[(. . .)2] +
∑
i̸=j

E(. . .)(. . .)] =
∑
i

E[(. . .)2]

(the sum over i ̸= j is 0, as there by pairwise independence and the Multipli-
cation Theorem E[(. . .)(. . .)] = E[(. . .)]E[(. . .)] = 0.0 = 0 – variance of sum
= sum of variances under pairwise independence). [5]
(ii) First Borel-Cantelli Lemma: if A := limsupAn,

∑
P (An) < ∞ implies

P (A) = P (Ani.o.) = 0. [2]
Second Borel-Cantelli Lemma: if the An are independent, P (An) = ∞ im-
plies P (A) = P (Ani.o.) = 1. [2]
(iii) As I(Ai) is Bernoulli with parameter P (Ai), its variance is P (Ai)[1 −
P (Ai)] ≤ P (Ai). So

var(Sn) = E[(Sn −mn)
2] ≤

n∑
1

P (Ai) = mn,

which increases to +∞ as
∑

P (An) diverges, by assumption. But

P (S ≤ mn/2) ≤ P (Sn ≤ mn/2) (Sn ≤ S)

= P (Sn −mn ≤ −mn/2)

≤ P (|Sn −mn| ≥ mn/2)

≤ 4

m2
n

var(Sn) (by Tchebycheff’s Inequality)

≤ 4/mn (by above) → 0 (n → ∞).

But the LHS increases to P (S < ∞), by continuity (= σ-additivity) of P (.).
So P (S < ∞) = 0: P (

∑
I(An) < ∞) = 0, i.e. P (

∑
I(An) = ∞) = 1. This

says that P (An i.o.) = 1: P (lim supAn) = 1. // [8]
(iv) This is important, as ((i) and (iii) show that the Etemadi proof of the
Strong Law of Large Numbers (based on a geometric subsequence – presented
in lectures) extends from independence to pairwise independence. [3]
All seen in lectures.
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Q3. X is infinitely divisible (id) if for each n X has the same distribution as
the sum of n independent copies of some random variable. [2]
The Lévy-Khintchine formula (LK) states that X is id iff its characteristic
function has the form

E exp{iuX1} = exp{−Ψ(u)} (u ∈ R)

for some a ∈ R, σ ≥ 0,
∫
min(1, |x|2µ(dx) < ∞, where the Lévy exponent Ψ

is

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(|x| < 1)µ(dx). [2]

X is symmetric stable if X has the same distribution as −X, and the same
distribution as c(X1 +X2), where X1, X2 are independent copies X1, X2 of
itself, for some constant c. [2]
The Lévy exponent of a symmetric stable law has the form Ψ(u) = |u|α,
where 0 < α ≤ 2 is the index. This is Gaussian with σ = 1 if α = 2; if
α ∈ (0, 2) it has Lévy measure µ(dx) = cdx/|x|1+α. [2]
So for α = 3/2,

Ψ(u) = |u|3/2 = c(
∫ −1

−∞
+

∫ ∞

1
)(1−eiux)dx/|x|5/2+c(

∫ 0

−1
+

∫ 1

0
)(1−eiux+iux)dx/|x|5/2.

In each of
∫−1
−∞,

∫ 0
−1, replace x by −x, and use eiux + e−iux = 2 cosux. The

±iux terms cancel, and then the
∫ 1
0 and

∫∞
1 combine, to give

|u|3/2 = c.2
∫ ∞

0
(1− cosux)dx/x5/2.

Take u > 0, and differentiate: 3
2
u1/2 = c.2

∫∞
0 sin uxdx/x3/2, = c.2u1/2

∫∞
0 sin vdv/v3/2,

putting v := ux. The integral on the right is
√
2π, given. So for u > 0

3

2
u1/2 = 2

√
2πcu1/2 : c =

3

4
√
2π

.

The Lévy measure of the Helmholtz distribution is thus

µ(dx) =
3

4
√
2π

dx/|x|5/2. [8]

If X1, X2, . . . are independent Helmholtz, the CF of each of X1, . . . , Xn

is exp{−|u|3/2}, so that of each Xi/n
2/3 is e−|u|3/2/n, so that of their sum is

e−|u|3/2 , the Helmholtz CF. So (X1 + . . . + Xn)/n
2/3 is Helmholtz, for each

n. This does not contradict the CLT, as the Helmholtz does not have a
variance. [4]
All seen.
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Q4.Uniform Integrability1. Call Xn uniformly integrable (UI) if

supn

∫
{|Xn|>a}

|Xn|dP ↓ 0 (a ↑ ∞). [2]

Theorem. For (Xn) UI,
(i) E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim supE[Xn] ≤ E[lim sup Xn].
(ii) If Xn → X a.s. or in prob., then X ∈ L1 and E[Xn] → E[X].

Proof. (i) For c ≥ 0,

E[Xn] =
∫
XndP =

∫
{Xn<−c}

XndP +
∫
{Xn≥−c}

XndP.

Choose ϵ > 0. By UI, we can take c so large that each first term on RHS has
modulus < ϵ. As XnI(Xn ≥ −c) ≥ −c, integrable, Fatou’s Lemma gives

lim inf
∫
{Xn≥−c}

XndP ≥
∫

lim infXnI(Xn ≥ −c)dP.

As XnI(Xn ≥ −c) ≥ Xn, RHS ≥
∫
lim infXndP . Combining,

lim inf E[Xn] ≥ E[lim infXn]− ϵ.

As ϵ > 0 is arbitrarily small, this gives the ‘liminf’ part; the ‘limsup’ part is
similar. [10]
(ii) If Xn → X a.s., (ii) follows from (i). [2]
If Xn → X in probability, there is a subsequence Xnk

→ X a.s. (quote).
Then by (i), X ∈ L1, and E[Xnk

] → E[X]. Similarly, every subsequence
has a further sub-subsequence → X a.s., along which the mean converges to
E[X]. But this implies convergence along the whole sequence (given). // [6]
All seen in lectures.

1The solution below is taken from my lecture notes, and is as seen by my checker and
the external examiner. Unfortunately, it was not until just before beginning the marking
that I realised that the question of the integrability of the limit was not addressed explicitly
– as it was similarly passed over in the textbook source I used, Ash Th. 7.5.2. I have
given all the marks due for this to any candidate who attempted the question. The best
way to do this is to make the relevant integrability an explicit part of the statement of
Fatou’s Lemma (or Theorem), and I have done this in the relevant lecture, L8, now up on
the website. For the textbook I used here, see
V. I. BOGACHEV, Measure Theory, Volume 1, Springer 2007, Th. 2.8.3 p.131.
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Q5. A function ϕ is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) ∀λ ∈ [0, 1], x, y. [2]

Jensen’s inequality states that

ϕ(E[X]) ≤ E[ϕ(X)]

for convex ϕ and random variables X with X, ϕ(X) both integrable. [2]
The conditional Jensen inequality states that for A a σ-field, ϕ, X as above,

ϕ(E[X|A]) ≤ E[ϕ(X)|A]. [2]

(i) For s < t, Ms = E[Mt|Fs] as M is a martingale. So by the conditional
Jensen inequality,

ϕ(Ms) = ϕ(E[Mt|Fs]) ≤ E[ϕ(Mt)|Fs],

which says that ϕ(M) is a submartingale. [3]
(ii) If M is a submartingale, Ms ≤ E[Mt|Fs]. As ϕ is non-decreasing on the
range of M ,

ϕ(Ms) ≤ ϕ(E[Mt|Fs]),

≤ E[ϕ(Mt)|Fs]

by the conditional Jensen inequality again, and again ϕ(M) is a submartin-
gale. [4]
(iii) As Brownian motion B is a martingale (lectures), and x2 is convex (its
second derivative is 1 ≥ 0), B2 is a submartingale by (i). [3]
(iv) As B2

t − t is a martingale (which you may quote here as it is not asked
– but is easy to prove, as in lectures)

B2
t = [B2

t − t] + t (submg = mg + incr)

is the Doob-Meyer decomposition of B2
t . The increasing process here is t,

which is thus the quadratic variation of Brownian motion B. [4]
All seen, lectures and problems.
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Q6. (i) The Ornstein-Uhlenbeck SDE dV = −βV dt+σdW (OU) models the
velocity of a diffusing particle. The −βV dt term is frictional drag; the σdW
term is noise. [2]
(ii) e−βt solves the corresponding homogeneous DE dV = −βV dt. So by
variation of parameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +∫ t
0 e

βudW . So with initial velocity v0,

V = v0e
−βt + σe−βt

∫ t

0
eβudWu. [4]

(iii) V is Gaussian, as it is obtained from the Gaussian process W by linear
operations.
Vt has mean v0e

−βt, as E[eβudWu] =
∫ t
0 e

βuE[dWu] = 0.
By the Itô isometry, Vt has variance

E[(σe−βt
∫ t

0
eβudWu)

2] = σ2
∫ t

0
(e−βt+βu)2du

= σ2e−2βt
∫ t

0
e2βudu = σ2e−2βt[e2βt − 1]/(2β) = σ2[1− e−2βt]/(2β).

So the limit distribution as t → ∞ is N(0, σ2/(2β)). [4]
(iv) For u ≥ 0, the covariance is cov(Vt, Vt+u), which (subtracting off v0e

−βt

as we may) is

σ2E[e−βt
∫ t

0
eβvdWv.e

−β(t+u)(
∫ t

0
+

∫ t+u

t
)eβwdWw].

By independence of Brownian increments, the
∫ t+u
t term contributes 0, leav-

ing as before

cov(Vt, Vt+u) = σ2e−βu[1− e−2βt]/(2β) → σ2e−βu/(2β) (t → ∞). [4]

(v) The process V is Markov (a diffusion), being the solution of the SDE
(OU). [3]
(vi) The process shows mean reversion, and the financial relevance is to the
Vasicek model of interest-rate theory. [3]
Seen, lectures.

N. H. Bingham
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